Tag Archives: economizer

Doing Dew Point Tests and Lowering Expectations

Originally posted May 9, 2014:

There were times when I was working at the Coal-Fired Power Plant in North Central Oklahoma when I wondered if there was anything that we couldn’t do. Surrounded by True Power Plant Men I found that when we were facing a seemingly impossible task, a Power Plant Man would come up with an extremely creative solution to the problem. One such example was during the “We’ve Got The Power” program. I talked about this program in an early post called “Power Plant We’ve Got the Power Program” so I won’t go into detail here about the program itself. I will just say that we broke out into teams to find creative ways to operate more efficiently, and to cut costs.

I was a team leader of our team, and looking back I must have had two criteria in mind when I picked the team members that would be on my team. The first would have been that they were True Power Plant Men (and woman) with a higher than average intelligence. The second criteria would have been that they were friends of mine. I say this, because everyone on my team fit the bill.

During out team meetings, Terry Blevins would often say some bombastic statement that the average person may be inclined to dismiss immediately as being absurd. I say that because I remember more than once thinking that what Terry had just said wouldn’t amount to much. As it turned out, our biggest money saving ideas were those truly bombastic statements that Terry was making. One such idea had to do with the heaters on the precipitators that kept the hoppers and the insulators on the roof too hot to collect moisture.

The Precipitator is a very large box that takes the ash out of the exhaust before it goes out of the smoke stack (how many times have I made that statement in the last two years?). Anyway, the exhaust from the boiler after the coal has been turned to ash in the fireball in the boiler contains a large amount of moisture. The last thing you want to happen is for the temperature of the flue gas to fall below the dew point. When that happens, moisture collects on the structure in a form of… well… of Acid Rain. Basically eating away the precipitator and the duct work from the inside.

Somewhere along the line, it had been determined that the dewpoint of the flue gas was not higher than 250 degrees. So, as long as the structure was at least 250 degrees, no moisture would be collected. Four heaters were mounted on each of the 84 hoppers (on each of the two precipitators) and heaters were mounted on the roof around each of the insulators that held up the wire racks on both ends.

When Terry walked into the office to attend one of our first “We’ve Got The Power” team meetings, he said, I think we could save a lot of money if we did something about the heaters on the precipitator. — He may remember being greeted with blank stares (at least from me). Um. Ok. Heaters on the precipitator. I knew they were everywhere, but I never gave them much thought.

I think Terry could tell right away that I hadn’t taken his idea seriously. I don’t know. Maybe he was bothered by the sound of my eyeballs rolling around in circles as if someone has conked me on the head. So, he explained his idea further. He pointed out that the roof heaters on just one of the precipitators used about 211 kilowatt-hours and the hopper heaters used about 345 kilowatt-hours. Together it is more than half a Megawatt of power. — This definitely caught our attention. That meant that between both of the Precipitators (since we had two boilers at our plant), we could possibly save over a Megawatt of electricity every hour we could shut down the heaters.

The plant has a similar electrostatic precipitator, only it is twice as long

The plant has a similar electrostatic precipitator, only ours is twice as long

After discussing all the aspects of the idea, we decided that in order for the idea to have any merit, we had to know if the dew point really was around 250 degrees, or was it possibly a lot lower. 250 degrees seemed high to begin with since the boiling point of water is 212 degrees. If lower, then we could have a workable idea. Originally, I wanted to tackle the task of finding the dew point. So, I went about it in a Science Experiment sort of way.

I figured that if we were able to lower the temperature of the flue gas to a known temperature below the dewpoint, and by knowing the volume of the gas, and the amount of liquid we could condense out of it, we could determine (possibly) the dew point. So, I brought my Graham Condenser to work, and Scott Hubbard and I went up to the 250 foot landing on the smoke stack with the intent of sucking a known amount of exhaust from the smoke stack while the unit was at full load.

Scott Hubbard

Scott Hubbard

We would run it through the condenser while running cool water through it to lower the temperature.

The Exact Graham Condenser used in our experiment Spring 1990

The Exact Graham Condenser used in our experiment Spring 1990 (and that’s my hairy hand in this selfie)

I could measure the output of the vacuum pump by filling up an inverted Erlemeyer flask with water and then letting the flue gas displace the water. — I always loved doing experiments like this in the 9th grade science glass with Mr. Godfrey our Physical Science Teacher (Donna Westhoff, who may sometimes read this blog was in my class and sat right behind me).

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

Ok. Side Story, since I mentioned Donna Westhoff from the 9th grade 1974-75 school year.

I knew that Donna’s father was a fire fighter, because one day during a special outing when we were with a group of bicycling Junior High School students and a teacher, we stopped at Donna Westhoff’s house to get a drink of water. On the walls in her house were different types of fire fighting treasures. Donna explained that her father was a fire fighter… That was the Spring of 1975 in Columbia, Missouri

Fast forward 16 years later (1991) at the Power Plant in the middle of nowhere in North Central Oklahoma. Just about a year after the story I’m telling now…. I left the logic room and went to catch the elevator to the Control room. When the doors opened, Tony Mena was in there with a bunch of college age students giving them a tour of the plant. I entered the elevator and turned around to face the door as it closed.

As I was standing there, I suddenly became aware that the person standing next to me was staring right at me. So, I turned to see who it was. Standing next to me was someone that looked very familiar wearing a big grin as if she knew who I was. I recognized her, and while my mind was going through filing cabinets of memories trying to index this particular person, I asked her, “Don’t I know you?” She shook her head and said, “I’m Donna Westhoff!”

A High School picture of Donna Westhoff who is on the Lower Left

A High School picture of Donna Westhoff who is on the Lower Left

As the elevator door opened and we stepped out, Donna and I began talking about what we were both doing there. She was surprised to find that I had become an electrician at a power plant instead of some kind of scientist in a lab somewhere. Donna was going to school in Stillwater where one of the best Fire Fighting Schools in the country is found. Following in her father’s footsteps, I thought. After a while I could tell that Tony was getting a little perturbed that the wisdom he was imparting about the fire protection system on the Turbine Generator wasn’t being absorbed by Donna, so I cut our conversation short. It turned out that a very good friend of hers lived just two houses from where we lived, and her friend’s mother was my landlord. Peggy Pickens.

Ok. End of the side story, and another example of how I occasionally run into friends from my childhood in the most unexpected places (see the post: “Relay Tests and Radio Quizzes with Ben Davis“).

So. Scott Hubbard and I tried using the Graham Condenser and the Erlenmeyer Flask, but we quickly found out that this wasn’t big enough, to capture a large enough quantity. So, we increased the size of the condenser by winding a garden hose around inside of a water bucket and filling it with ice. Then we captured all the water that condensed in the hose.

A 5 gallon water bucket we used as our condenser with a garden hose and ice

A 5 gallon water bucket we used as our condenser with a garden hose and ice

When it finally came down to it. Even though it was fun trying to do this experiment halfway up the 500 foot smoke stack, I never was able to figure out how to calculate the dew point given the data I had collected.

That’s when we decided to look at dew point sensors in the parts catalogs. If we could stick a probe down into the precipitator and measure the dew point directly in the flue gas, that would be best. After looking at a few in the catalog, Terry Blevins said he thought he could make one. So, he went to work.

Terry Blevins

Terry Blevins

The next day he came in with an inch and a half conduit with hoses hanging out the back and a homemade sensor on the other end. I won’t go into detail how the sensor was built because some day Terry may want to patent this thing because, as it turned out, it was so sensitive that it could detect my breathe from about a foot away. If I breathed out of my mouth toward the sensor, it would detect the moisture in my breath. This was perfect!

We went to work on the roof of the precipitator sticking the probe down into different sections of the precipitator. It not only measured the moisture, it also had thermocouples on it that we used to accurately measure the temperature of the sensor as we varied the temperature by blowing cold air through the conduit using the same ice bucket and hose from before.

I could go into a lot of detail about how we performed our experiments, but it would only excite me and bore you. So, let me just say that we came up with two very important results. First of all, at full load when the humidity outside was at 100% the dew point was around 150 degrees! A full 100 degrees below what the plant had originally assumed. This was very important, because a lot of energy was spent trying to keep the flue gas above 250 degrees, and just by lowering it down to 210 degrees, still a safe amount above the dew point, that extra energy could be used to create electricity.

The second thing that we discovered was that the middle sections of the precipitator was a lot cooler inside than the outer fields. We realized that this was caused by the air preheater coils that rotated between the flue gas and the Primary Air intake duct. This took the last amount of heat possible from the exhaust and transferred it to the air going into the boiler so that it was already hot when it was used to burn the coal. Because of the way the air preheater coils rotated, the part of the duct toward the middle of the precipitator was a lot cooler than the air on the outside.

Diagram of a boiler

Diagram of a boiler. See the Air Preheater? Flue Gas on one side and ambient air on the other

Lower temperatures in the precipitator increased the performance, so we decided that if we could mix the air around as it was going into the precipitator so that the outer edges were cooler, then it would increase the overall performance. One suggestion was to put a mobile home in the duct work because in Oklahoma it was a known fact that mobile homes attracted tornadoes and it would probably cause a tornadic reaction that would mix up the flue gases. — We just couldn’t figure out how to convince management to put a mobile home in the duct between the economizer and the precipitator.

Thanks to Terry’s handy dandy Dew Point Sensor, we were able to prove that the hopper and roof heaters could be lowered to where we set the thermostat at 180 degrees. At that setting the heaters that used to always run at 250 degrees would remain off anytime the ambient temperature was above 45 degrees. In Oklahoma, that is most of the year. This turned out to save over $350,000 per year in energy savings at a cost of about 1.5 cents per kilowatt-hour. Not to mention the unknown savings from being able to lower the flue gas temperature by 40 degrees.

Doing Dew Point Tests and Lowering Expectations

Originally posted May 9, 2014:

There were times when I was working at the Coal-Fired Power Plant in North Central Oklahoma when I wondered if there was anything that we couldn’t do. Surrounded by True Power Plant Men I found that when we were facing a seemingly impossible task, a Power Plant Man would come up with an extremely creative solution to the problem. One such example was during the “We’ve Got The Power” program. I talked about this program in an early post called “Power Plant We’ve Got the Power Program” so I won’t go into detail here about the program itself. I will just say that we broke out into teams to find creative ways to operate more efficiently, and to cut costs.

I was a team leader of our team, and looking back I must have had two criteria in mind when I picked the team members that would be on my team. The first would have been that they were True Power Plant Men (and woman) with a higher than average intelligence. The second criteria would have been that they were friends of mine. I say this, because everyone on my team fit the bill.

During out team meetings, Terry Blevins would often say some bombastic statement that the average person may be inclined to dismiss immediately as being absurd. I say that because I remember more than once thinking that what Terry had just said wouldn’t amount to much. As it turned out, our biggest money saving ideas were those truly bombastic statements that Terry was making. One such idea had to do with the heaters on the precipitators that kept the hoppers and the insulators on the roof too hot to collect moisture.

The Precipitator is a very large box that takes the ash out of the exhaust before it goes out of the smoke stack (how many times have I made that statement in the last two years?). Anyway, the exhaust from the boiler after the coal has been turned to ash in the fireball in the boiler contains a large amount of moisture. The last thing you want to happen is for the temperature of the flue gas to fall below the dew point. When that happens, moisture collects on the structure in a form of… well… of Acid Rain. Basically eating away the precipitator and the duct work from the inside.

Somewhere along the line, it had been determined that the dewpoint of the flue gas was not higher than 250 degrees. So, as long as the structure was at least 250 degrees, no moisture would be collected. Four heaters were mounted on each of the 84 hoppers (on each of the two precipitators) and heaters were mounted on the roof around each of the insulators that held up the wire racks on both ends.

When Terry walked into the office to attend one of our first “We’ve Got The Power” team meetings, he said, I think we could save a lot of money if we did something about the heaters on the precipitator. — He may remember being greeted with blank stares (at least from me). Um. Ok. Heaters on the precipitator. I knew they were everywhere, but I never gave them much thought.

I think Terry could tell right away that I hadn’t taken his idea seriously. I don’t know. Maybe he was bothered by the sound of my eyeballs rolling around in circles as if someone has conked me on the head. So, he explained his idea further. He pointed out that the roof heaters on just one of the precipitators used about 211 kilowatt-hours and the hopper heaters used about 345 kilowatt-hours. Together it more than half a Megawatt of power. — This definitely caught our attention. That meant that between both of the Precipitators (since we had two boilers at our plant), we could possibly save over a Megawatt of electricity every hour we could shut down the heaters.

The plant has a similar electrostatic precipitator, only it is twice as long

The plant has a similar electrostatic precipitator, only ours is twice as long

After discussing all the aspects of the idea, we decided that in order for the idea to have any merit, we had to know if the dew point really was around 250 degrees, or was it possibly a lot lower. 250 degrees seemed high to begin with since the boiling point of water is 212 degrees. If lower, then we could have a workable idea. Originally, I wanted to tackle the task of finding the dew point. So, I went about it in a Science Experiment sort of way.

I figured that if we were able to lower the temperature of the flue gas to a known temperature below the dewpoint, and by knowing the volume of the gas, and the amount of liquid we could condense out of it, we could determine (possibly) the dew point. So, I brought my Graham Condenser to work, and Scott Hubbard and I went up to the 250 foot landing on the smoke stack with the intent of sucking a known amount of exhaust from the smoke stack while the unit was at full load.

Scott Hubbard

Scott Hubbard

We would run it through the condenser while running cool water through it to lower the temperature.

The Exact Graham Condenser used in our experiment Spring 1990

The Exact Graham Condenser used in our experiment Spring 1990 (and that’s my hairy hand in this selfie)

I could measure the output of the vacuum pump by filling up an inverted Erlemeyer flask with water and then letting the flue gas displace the water. — I always loved doing experiments like this in the 9th grade science glass with Mr. Godfrey our Physical Science Teacher (Donna Westhoff, who may sometimes read this blog was in my class and sat right behind me).

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

Ok. Side Story, since I mentioned Donna Westhoff from the 9th grade 1974-75 school year.

I knew that Donna’s father was a fire fighter, because one day during a special outing when we were with a group of bicycling Junior High School students and a teacher, we stopped at Donna Westhoff’s house to get a drink of water. On the walls in her house were different types of fire fighting treasures. Donna explained that her father was a fire fighter… That was the Spring of 1975 in Columbia, Missouri

Fast forward 16 years later (1991) at the Power Plant in the middle of nowhere in North Central Oklahoma. Just about a year after the story I’m telling now…. I left the logic room and went to catch the elevator to the Control room. When the doors opened, Tony Mena was in there with a bunch of college age students giving them a tour of the plant. I entered the elevator and turned around to face the door as it closed.

As I was standing there, I suddenly became aware that the person standing next to me was staring right at me. So, I turned to see who it was. Standing next to me was someone that looked very familiar wearing a big grin as if she knew who I was. I recognized her, and while my mind was going through filing cabinets of memories trying to index this particular person, I asked her, “Don’t I know you?” She shook her head and said, “I’m Donna Westhoff!”

A High School picture of Donna Westhoff  who is on the Lower Left

A High School picture of Donna Westhoff who is on the Lower Left

As the elevator door opened and we stepped out, Donna and I began talking about what we were both doing there. She was surprised to find that I had become an electrician at a power plant instead of some kind of scientist in a lab somewhere. Donna was going to school in Stillwater where one of the best Fire Fighting Schools in the country is found. Following in her father’s footsteps, I thought. After a while I could tell that Tony was getting a little perturbed that the wisdom he was imparting about the fire protection system on the Turbine Generator wasn’t being absorbed by Donna, so I cut our conversation short. It turned out that a very good friend of hers lived just two houses from where we lived, and her friend’s mother was my landlord. Peggy Pickens.

Ok. End of the side story, and another example of how I occasionally run into friends from my childhood in the most unexpected places (see the post: “Relay Tests and Radio Quizzes with Ben Davis“).

So. Scott Hubbard and I tried using the Graham Condenser and the Erlenmeyer Flask, but we quickly found out that this wasn’t big enough, to capture a large enough quantity. So, we increased the size of the condenser by winding a garden hose around inside of a water bucket and filling it with ice. Then we captured all the water that condensed in the hose.

A 5 gallon water bucket we used as our condenser with a garden hose and ice

A 5 gallon water bucket we used as our condenser with a garden hose and ice

When it finally came down to it. Even though it was fun trying to do this experiment halfway up the 500 foot smoke stack, I never was able to figure out how to calculate the dew point given the data I had collected.

That’s when we decided to look at dew point sensors in the parts catalogs. If we could stick a probe down into the precipitator and measure the dew point directly in the flue gas, that would be best. After looking at a few in the catalog, Terry Blevins said he thought he could make one. So, he went to work.

Terry Blevins

Terry Blevins

The next day he came in with an inch and a half conduit with hoses hanging out the back and a homemade sensor on the other end. I won’t go into detail how the sensor was built because some day Terry may want to patent this thing because, as it turned out, it was so sensitive that it could detect my breathe from about a foot away. If I breathed out of my mouth toward the sensor, it would detect the moisture in my breath. This was perfect!

We went to work on the roof of the precipitator sticking the probe down into different sections of the precipitator. It not only measured the moisture, it also had thermocouples on it that we used to accurately measure the temperature of the sensor as we varied the temperature by blowing cold air through the conduit using the same ice bucket and hose from before.

I could go into a lot of detail about how we performed our experiments, but it would only excite me and bore you. So, let me just say that we came up with two very important results. First of all, at full load when the humidity outside was at 100% the dew point was around 150 degrees! A full 100 degrees below what the plant had originally assumed. This was very important, because a lot of energy was spent trying to keep the flue gas above 250 degrees, and just by lowering it down to 210 degrees, still a safe amount above the dew point, that extra energy could be used to create electricity.

The second thing that we discovered was that the middle sections of the precipitator was a lot cooler inside than the outer fields. We realized that this was caused by the air preheater coils that rotated between the flue gas and the Primary Air intake duct. This took the last amount of heat safely possible from the exhaust and transferred it to the air going into the boiler so that it was already hot when it was used to burn the coal. Because of the way the air preheater coils rotated, the part of the duct toward the middle of the precipitator was a lot cooler than the air on the outside.

Diagram of a boiler

Diagram of a boiler. See the Air Preheater? Flue Gas on one side and ambient air on the other

Lower temperatures in the precipitator increased the performance, so we decided that if we could mix the air around as it was going into the precipitator so that the outer edges were cooler, then it would increase the overall performance. One suggestion was to put a mobile home in the duct work because in Oklahoma it was a known fact that mobile homes attracted tornadoes and it would probably cause a tornadic reaction that would mix up the flue gases. — We just couldn’t figure out how to convince management to put a mobile home in the duct between the economizer and the precipitator.

Thanks to Terry’s handy dandy Dew Point Sensor, we were able to prove that the hopper and roof heaters could be lowered to where we set the thermostat at 180 degrees. At that setting the heaters that used to always run at 250 degrees would remain off anytime the ambient temperature was above 45 degrees. In Oklahoma, that is most of the year. This turned out to save over $350,000 per year in energy savings at a cost of about 1.5 cents per kilowatt-hour. Not to mention the unknown savings from being able to lower the flue gas temperature by 40 degrees.

Doing Dew Point Tests and Lowering Expectations

Originally posted May 9, 2014:

There were times when I was working at the Coal-Fired Power Plant in North Central Oklahoma when I wondered if there was anything that we couldn’t do. Surrounded by True Power Plant Men I found that when we were facing a seemingly impossible task, a Power Plant Man would come up with an extremely creative solution to the problem. One such example was during the “We’ve Got The Power” program. I talked about this program in an early post called “Power Plant We’ve Got the Power Program” so I won’t go into detail here about the program itself. I will just say that we broke out into teams to find creative ways to operate more efficiently, and to cut costs.

I was a team leader of our team, and looking back I must have had two criteria in mind when I picked the team members that would be on my team. The first would have been that they were True Power Plant Men (and woman) with a higher than average intelligence. The second criteria would have been that they were friends of mine. I say this, because everyone on my team fit the bill.

During out team meetings, Terry Blevins would often say some bombastic statement that the average person may be inclined to dismiss immediately as being absurd. I say that because I remember more than once thinking that what Terry had just said wouldn’t amount to much. As it turned out, our biggest money saving ideas were those truly bombastic statements that Terry was making. One such idea had to do with the heaters on the precipitators that kept the hoppers and the insulators on the roof too hot to collect moisture.

The Precipitator is a very large box that takes the ash out of the exhaust before it goes out of the smoke stack (how many times have I made that statement in the last two years?). Anyway, the exhaust from the boiler after the coal has been turned to ash in the fireball in the boiler contains a large amount of moisture. The last thing you want to happen is for the temperature of the flue gas to fall below the dew point. When that happens, moisture collects on the structure in a form of… well… of Acid Rain. Basically eating away the precipitator and the duct work from the inside.

Somewhere along the line, it had been determined that the dewpoint of the flue gas was not higher than 250 degrees. So, as long as the structure was at least 250 degrees, no moisture would be collected. Four heaters were mounted on each of the 84 hoppers (on each of the two precipitators) and heaters were mounted on the roof around each of the insulators that held up the wire racks on both ends.

When Terry walked into the office to attend one of our first “We’ve Got The Power” team meetings, he said, I think we could save a lot of money if we did something about the heaters on the precipitator. — He may remember being greeted with blank stares (at least from me). Um. Ok. Heaters on the precipitator. I knew they were everywhere, but I never gave them much thought.

I think Terry could tell right away that I hadn’t taken his idea seriously. I don’t know. Maybe he was bothered by the sound of my eyeballs rolling around in circles as if someone has conked me on the head. So, he explained his idea further. He pointed out that the roof heaters on just one of the precipitators used about 211 kilowatt-hours and the hopper heaters used about 345 kilowatt-hours. Together it more than half a Megawatt of power. — This definitely caught our attention. That meant that between both of the Precipitators (since we had two boilers at our plant), we could possibly save over a Megawatt of electricity every hour we could shut down the heaters.

The plant has a similar electrostatic precipitator, only it is twice as long

The plant has a similar electrostatic precipitator, only ours is twice as long

After discussing all the aspects of the idea, we decided that in order for the idea to have any merit, we had to know if the dew point really was around 250 degrees, or was it possibly a lot lower. 250 degrees seemed high to begin with since the boiling point of water is 212 degrees. If lower, then we could have a workable idea. Originally, I wanted to tackle the task of finding the dew point. So, I went about it in a Science Experiment sort of way.

I figured that if we were able to lower the temperature of the flue gas to a known temperature below the dewpoint, and by knowing the volume of the gas, and the amount of liquid we could condense out of it, we could determine (possibly) the dew point. So, I brought my Graham Condenser to work, and Scott Hubbard and I went up to the 250 foot landing on the smoke stack with the intent of sucking a known amount of exhaust from the smoke stack while the unit was at full load.

Scott Hubbard

Scott Hubbard

We would run it through the condenser while running cool water through it to lower the temperature.

The Exact Graham Condenser used in our experiment Spring 1990

The Exact Graham Condenser used in our experiment Spring 1990 (and that’s my hairy hand in this selfie)

I could measure the output of the vacuum pump by filling up an inverted Erlemeyer flask with water and then letting the flue gas displace the water. — I always loved doing experiments like this in the 9th grade science glass with Mr. Godfrey our Physical Science Teacher (Donna Westhoff, who may sometimes read this blog was in my class and sat right behind me).

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

Ok. Side Story, since I mentioned Donna Westhoff from the 9th grade 1974-75 school year.

I knew that Donna’s father was a fire fighter, because one day during a special outing when we were with a group of bicycling Junior High School students and a teacher, we stopped at Donna Westhoff’s house to get a drink of water. On the walls in her house were different types of fire fighting treasures. Donna explained that her father was a fire fighter… That was the Spring of 1975 in Columbia, Missouri

Fast forward 16 years later (1991) at the Power Plant in the middle of nowhere in North Central Oklahoma. Just about a year after the story I’m telling now…. I left the logic room and went to catch the elevator to the Control room. When the doors opened, Tony Mena was in there with a bunch of college age students giving them a tour of the plant. I entered the elevator and turned around to face the door as it closed.

As I was standing there, I suddenly became aware that the person standing next to me was staring right at me. So, I turned to see who it was. Standing next to me was someone that looked very familiar wearing a big grin as if she knew who I was. I recognized her, and while my mind was going through filing cabinets of memories trying to index this particular person, I asked her, “Don’t I know you?” She shook her head and said, “I’m Donna Westhoff!”

A High School picture of Donna Westhoff  who is on the Lower Left

A High School picture of Donna Westhoff who is on the Lower Left

As the elevator door opened and we stepped out, Donna and I began talking about what we were both doing there. She was surprised to find that I had become an electrician at a power plant instead of some kind of scientist in a lab somewhere. Donna was going to school in Stillwater where one of the best Fire Fighting Schools in the country is found. Following in her father’s footsteps, I thought. After a while I could tell that Tony was getting a little perturbed that the wisdom he was imparting about the fire protection system on the Turbine Generator wasn’t being absorbed by Donna, so I cut our conversation short. It turned out that a very good friend of hers lived just two houses from where we lived, and her friend’s mother was my landlord. Peggy Pickens.

Ok. End of the side story, and another example of how I occasionally run into friends from my childhood in the most unexpected places (see the post: “Relay Tests and Radio Quizzes with Ben Davis“).

So. Scott Hubbard and I tried using the Graham Condenser and the Erlenmeyer Flask, but we quickly found out that this wasn’t big enough, to capture a large enough quantity. So, we increased the size of the condenser by winding a garden hose around inside of a water bucket and filling it with ice. Then we captured all the water that condensed in the hose.

A 5 gallon water bucket we used as our condenser with a garden hose and ice

A 5 gallon water bucket we used as our condenser with a garden hose and ice

When it finally came down to it. Even though it was fun trying to do this experiment halfway up the 500 foot smoke stack, I never was able to figure out how to calculate the dew point given the data I had collected.

That’s when we decided to look at dew point sensors in the parts catalogs. If we could stick a probe down into the precipitator and measure the dew point directly in the flue gas, that would be best. After looking at a few in the catalog, Terry Blevins said he thought he could make one. So, he went to work.

Terry Blevins

Terry Blevins

The next day he came in with an inch and a half conduit with hoses hanging out the back and a homemade sensor on the other end. I won’t go into detail how the sensor was built because some day Terry may want to patent this thing because, as it turned out, it was so sensitive that it could detect my breathe from about a foot away. If I breathed out of my mouth toward the sensor, it would detect the moisture in my breath. This was perfect!

We went to work on the roof of the precipitator sticking the probe down into different sections of the precipitator. It not only measured the moisture, it also had thermocouples on it that we used to accurately measure the temperature of the sensor as we varied the temperature by blowing cold air through the conduit using the same ice bucket and hose from before.

I could go into a lot of detail about how we performed our experiments, but it would only excite me and bore you. So, let me just say that we came up with two very important results. First of all, at full load when the humidity outside was at 100% the dew point was around 150 degrees! A full 100 degrees below what the plant had originally assumed. This was very important, because a lot of energy was spent trying to keep the flue gas above 250 degrees, and just by lowering it down to 210 degrees, still a safe amount above the dew point, that extra energy could be used to create electricity.

The second thing that we discovered was that the middle sections of the precipitator was a lot cooler inside than the outer fields. We realized that this was caused by the air preheater coils that rotated between the flue gas and the Primary Air intake duct. This took the last amount of heat safely possible from the exhaust and transferred it to the air going into the boiler so that it was already hot when it was used to burn the coal. Because of the way the air preheater coils rotated, the part of the duct toward the middle of the precipitator was a lot cooler than the air on the outside.

Diagram of a boiler

Diagram of a boiler. See the Air Preheater? Flue Gas on one side and ambient air on the other

Lower temperatures in the precipitator increased the performance, so we decided that if we could mix the air around as it was going into the precipitator so that the outer edges were cooler, then it would increase the overall performance. One suggestion was to put a mobile home in the duct work because in Oklahoma it was a known fact that mobile homes attracted tornadoes and it would probably cause a tornadic reaction that would mix up the flue gases. — We just couldn’t figure out how to convince management to put a mobile home in the duct between the economizer and the precipitator.

Thanks to Terry’s handy dandy Dew Point Sensor, we were able to prove that the hopper and roof heaters could be lowered to where we set the thermostat at 180 degrees. At that setting the heaters that used to always run at 250 degrees would remain off anytime the ambient temperature was above 45 degrees. In Oklahoma, that is most of the year. This turned out to save over $350,000 per year in energy savings at a cost of about 1.5 cents per kilowatt-hour. Not to mention the unknown savings from being able to lower the flue gas temperature by 40 degrees.

Sky Climbing in the Dark with Power Plant Boiler Rats — Repost

Originally Posted July 26, 2013:

I suppose everyone at some point in their life wishes they could work at Disney World or some other place where there is one wonder after another throughout their day.  Working in the Power Plant was a lot like that…. sometimes…..  I have mentioned a few times that when you drove through the gate to the coal-fired Power Plant in North Central Oklahoma each morning, you never knew what was in store for that day.  It was often a surprise.  Sometimes the surprise was a wonder.  Sometimes it was well…. surreal.

This is a story about one day in October 1986 during an overhaul while I was a plant electrician, where I entered a world totally foreign to just about anything I had encountered before.  You may think this is an odd statement if you have read some of my other posts where I have found myself in oddly dangerous situations and my life was in the balance.  Well…. this is one of those stories, with a new twist.

As I said, we were on overhaul.  This meant that one of the two units was offline and major repairs were taking place to fix things that can only be done when the unit isn’t running.  The two major areas of repair are the Turbine Generator and the Boiler.  People come from the other plants to help out and get paid a lot of overtime working long hours to complete this feat.

At this time I was working on motors in the electric shop.  I had been removing the fan motors from the large General Electric Transformer for Unit 1.  Changing their bearings and testing them.  Then putting them back in place.  The transformer had 24 of these motors, so after the first few, the work was becoming pretty routine.

A Main Power Transformer

A Main Power Transformer

Somewhere between the 11th or 12th motor David McClure came into the shop.  I think he may have been on the labor crew at the time.  He had only been working at the plant for about 8 months.  He was a welder, so I think if he had been on labor crew, they had quickly moved him into the welding shop because anybody with welding skills were always in high demand.

David told me that Bill Bennett had told him to ask me to help out with a problem in the boiler.  Now.  when i was on the labor crew, I had been in the boiler during an overhaul.  I had worked on shaking tubes in the reheat section and cleaning the clinkers out of the economizer section.  You can read about these moments of mania in the posts:  “Bob Lillibridge Meets the Boiler Ghost” and “Cracking a Boiled Egg in the Boiler and Other Days You Wish You Could Take Back“.

During those times I knew that something was taking place in the superheat section of the boiler, but I wasn’t exactly sure what it was.  You see, even when I was in the bottom ash hopper when it was being sandblasted, there was a wooden floor that had been put in above the hopper so that you couldn’t see the boiler overhead.  This was the first time I was going to go into the boiler to actually work on something other than laying down the floor (which I had been lucky enough to do once when I was working on the labor crew).

Diagram of a boiler

Diagram of a boiler

So, I grabbed my tool bucket and David took me up to the main entrance into the boiler which was next to the door where Chuck Ross and Cleve Smith had been blown off of the landing by the Boiler Dragon six years earlier when I was a summer help (see the post:  “Where Do Knights of the Past go to Fight Dragons Today?“).  About 40 feet up from the concrete floor we climbed into the boiler.

This is where I first came face to face with Boiler Rats.  These rats live in a boiler when it is taken offline.  Shortly after the boiler is cooled down, these “boiler rats” move in and they spend the next 4 or 10 weeks (depending on the length of the overhaul), roaming around the boiler sniffing out boiler tubes that are in need of repair.

Some lights had been placed around the bottom of the boiler to shine up the 200 feet to the top of the boiler.  That is the height of a 20 story building.  Yes.  That’s right.  The inside of the boiler is as tall as a 20 story building.  I couldn’t really see what was going on up there toward the top, but there was a boiler rat standing right there in the middle of the wooden floor staring at me with the grin (or snarl) that is typical of a rat.  Not a cute rat like this:

Rat from the Movie Ratatouille

Rat from the Movie Ratatouille

Or even a normal rat like this:

Normal looking rat

Normal looking rat

No.  These rats looked like Ron Hunt wearing his hillbilly teeth.  More like this:

rat from kootation

rat picture taken from kootation.com

Yep.  Red eyes and all, only the whiskers were longer.  I would go into how the boiler rats smelled, but I didn’t want to get too personal….

Anyway, this one boiler rat that had been waiting for me said that he had just finished rigging up this sky climber so that he could take me up into the upper reaches of the dark to work on a sky climber that was stuck.  He had rigged this sky climber up so that it would pull up next to the one that was hung up by the bottom of the high pressure boiler tubes that were hanging out over the top of the boiler.

If you have ever seen Window washers going up and down the side of a building washing windows, then you know what a sky climber is.

A sky climber

A sky climber

You see, the boiler rats would ride these sky climbers up from the wooden floor to the boiler tubes hanging down from the ceiling of the boiler.  One had stopped working and they needed an electrician to go up and fix it so that they could continue working.  That was my job…. I carry a badge…. oh… wait… that’s Sergeant Friday on Dragnet…  I carry a tool bucket that doubles as a trash can and triples as a stool.

So, I climbed into the sky climber and up we went.  I could see faint lights up above me where boiler rats were working away cutting and welding boiler tubes.  As we took off, one of the boiler rats said that a little while just before I had arrived, someone from above had dropped a tool that came flying down and stuck right into the wooden plank floor.  It had landed about 10 feet from another boiler rat.  This answered a question that I had for some time…. it turned out to be true… Boiler Rats do have Guardian Angels too.

Anyway, Up into the darkness we went.  The boiler rat (I believe this one was called Rodney… as in Rodney Meeks) operated the sky climber as I just enjoyed the ride.  Looking down, I saw the spot lights getting smaller and dimmer.  Looking up, I saw us approaching a group of hanging boiler rats, all doing their stuff.  Some were resting.  Some were welding.  Some were looking off into space in a daze after having been in the boiler for so long they had forgotten their name.

There were names for these rats.  One was called T-Bone.  Another was called ET.  There was a guy there called Goosman.  Another boiler rat was called Frazier.  I think it was John Brien that was staring off into space at the time, or was it Butch Ellis.  Oh.  Now I remember.  Butch was on one sky climber staring off into space at the other sky climber where john Brien was staring back at him.

There were many other boiler rats there from other plants.  They were all hanging down from the top of the boiler on these sky climbers like fruit hanging from a tree in the dark.  Most of them paid no attention to my arrival.

We pulled up to the sky climber that was broken.  I swung over the couple of feet from the one climber to the other, with a straight drop of about 160 feet down to the floor.  I looked below so that I could calculate that in case I slipped and fell, how I would try to swing my body just as i fell so as to miss any boiler rats below.  I wouldn’t have wanted to upset any boiler rat families by falling on their boiler rat breadwinners.

By Swinging my tool bucket toward the other sky climber, I followed the momentum so that it carried me over to the other platform, where I swung my bucket over the railing and climbed in.  Once settled, I took out my flashlight so that I could look around my new six or eight foot world.

I tried the controls, and sure enough… nothing happened.  Remembering my dropped flashlight almost exactly three years earlier that had almost cost me my life (see post:  “Angel of Death Passes By The Precipitator Door“), I took extra care not to drop any tools on some unsuspecting souls below.

I took out my multimeter and checked the voltage coming into the main junction box and found that the problem was in the connect where the cable came into the box.  So, this turned out to be a fairly easy fix.  The cord had been pulled by something (geez.  It was only hanging down 200 feet.  I don’t know what might have been pulling on it) and had worked its way out of the connections.

I told Rod that I would be able to fix this quickly and went to work removing the connector from the cable, cutting off the end and preparing it to be reconnected to the connector.  It was about that time that I became aware of something that had been going on since I had arrived, I just hadn’t noticed it.  Maybe it was a remark one of the boiler rats had said.  I think it was Goosman talking to Opal.  He said something like “That George Jones can sure sing.”

That was it.  That was the extra amount of strangeness that I had been experiencing since I had arrived.  Someone had a radio that was playing country music.  The music was echoing throughout the boiler so that all the hanging boiler rats could listen to it.  I realized that Butch and Brien weren’t just staring off into space at each other.  They were experiencing a moment of country music meditational bliss.  The moment the current song was over someone off in the distance that I couldn’t see in the dark or because they were stuck up inside a rack of boiler tubes, let out a hoot of satisfaction.  Butch and Brien rose and went back to work.

I have heard that it takes a village to raise a child…. Hillary Clinton even wrote a children’s book with that title once.  I experienced something similar but strangely different that day in October 1986.  A village of raised boiler rats, who for a moment, it seemed, some had stopped to sit by the welder’s campfire to listen to the tales being woven by the country music singer on the radio.

There was a sincere camaraderie between these individual boiler rats.  A culture had grown inside this boiler that was completely foreign to me.  I suppose the same thing happens to soldiers who put their lives on the line to protect our country.  When you are in a position where one wrong step and someone dies.  You bond to those around you in a unique way.

I am grateful for my brief encounter with the boiler rats that day.  They had invited me into their lair because they needed my help.  I was glad to have been able to fix there problem and be quickly on my way.

Though I never had a desire to become a boiler rat myself, during the many years where I walked alone throughout the inside of the precipitator I would sometimes hear the sounds coming down through the economizer from the Superheat section of the boiler.  Maybe a faint hint of country music.  I  knew that the boiler rat village had come together again like a group of nomads that meet every winter to share stories.  Sometimes I would take the plate straightening tool I carried and banged on the plates wondering if any of them would hear me way back up in the boiler.  I doubt anyone ever did.

Doing Dew Point Tests and Lowering Expectations

There were times when I was working at the Coal-Fired Power Plant in North Central Oklahoma when I wondered if there was anything that we couldn’t do.  Surrounded by True Power Plant Men I found that when we were facing a seemingly impossible task, a Power Plant Man would come up with an extremely creative solution to the problem.  One such example was during the “We’ve Got The Power” program.  I talked about this program in an early post called “Power Plant We’ve Got the Power Program” so I won’t go into detail here about the program itself.  I will just say that we broke out into teams to find creative ways to operate more efficiently, and to cut costs.

I was a team leader of our team, and looking back I must have had two criteria in mind when I picked the team members that would be on my team.  The first would have been that they were True Power Plant Men (and woman) with a higher than average intelligence.  The second criteria would have been that they were friends of mine.  I say this, because everyone on my team fit the bill.

During out team meetings, Terry Blevins would often say some bombastic statement that the average person may be inclined to dismiss immediately as being absurd.  I say that because I remember more than once thinking that what Terry had just said wouldn’t amount to much.  As it turned out, our biggest money saving ideas were those truly bombastic statements that Terry was making.  One such idea had to do with the heaters on the precipitators that kept the hoppers and the insulators on the roof too hot to collect moisture.

The Precipitator is a very large box that takes the ash out of the exhaust before it goes out of the smoke stack (how many times have I made that statement in the last two years?).  Anyway, the exhaust from the boiler after the coal has been turned to ash in the fireball in the boiler contains a large amount of moisture.   The last thing you want to happen is for the temperature of the flue gas to fall below the dew point.  When that happens, moisture collects on the structure in a form of… well…  of Acid Rain.  Basically eating away the precipitator and the duct work from the inside.

Somewhere along the line, it had been determined that the dewpoint of the flue gas was not higher than 250 degrees.  So, as long as the structure was at least 250 degrees, no moisture would be collected.    Four heaters were mounted on each of the 84 hoppers (on each of the two precipitators) and heaters were mounted on the roof around each of the insulators that held up the wire racks on both ends.

When Terry walked into the office to attend one of our first “We’ve Got The Power” team meetings, he said, I think we could save a lot of money if we did something about the heaters on the precipitator. —  He may remember being greeted with blank stares (at least from me).  Um.  Ok.  Heaters on the precipitator.  I knew they were everywhere, but I never gave them much thought.

I think Terry could tell right away that I hadn’t taken his idea seriously.  I don’t know.  Maybe he was bothered by the sound of my eyeballs rolling around in circles as if someone has conked me on the head.  So, he explained his idea further.  He pointed out that the roof heaters on just one of the precipitators used about 211 kilowatt-hours and the hopper heaters used about 345 kilowatt-hours.  Together it more than half a Megawatt of power.  — This definitely caught our attention.  That meant that between both of the Precipitators (since we had two boilers at our plant), we could possibly save over a Megawatt of electricity every hour we could shut down the heaters.

The plant has a similar electrostatic precipitator, only it is twice as long

The plant has a similar electrostatic precipitator, only ours is twice as long

After discussing all the aspects of the idea, we decided that in order for the idea to have any merit, we had to know if the dew point really was around 250 degrees, or was it possibly a lot lower.  250 degrees seemed high to begin with since the boiling point of water is 212 degrees.  If lower, then we could have a workable idea.  Originally, I wanted to tackle the task of finding the dew point.  So, I went about it in a Science Experiment sort of way.

I figured that if we were able to lower the temperature of the flue gas to a known temperature below the dewpoint, and by knowing the volume of the gas, and the amount of liquid we could condense out of it, we could determine (possibly) the dew point.  So, I brought my Graham Condenser to work, and Scott Hubbard and I went up to the 250 foot landing on the smoke stack with the intent of sucking a known amount of exhaust from the smoke stack while the unit was at full load.

Scott Hubbard

Scott Hubbard

We would run it through the condenser while running cool water through it to lower the temperature.

The Exact Graham Condenser used in our experiment Spring 1990

The Exact Graham Condenser used in our experiment Spring 1990 (and that’s my hairy hand in this selfie)

I could measure the output of the vacuum pump by filling up an inverted Erlemeyer flask with water and then letting the flue gas displace the water.  — I always loved doing experiments like this in the 9th grade science glass with Mr. Godfrey our Physical Science Teacher (Donna Westhoff, who may sometimes read this blog was in my class and sat right behind me).

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

An Erlenmeyer Flask (from Google Images, not from my Chemistry Lab)

Ok.  Side Story, since I mentioned Donna Westhoff from the 9th grade 1974-75 school year.

I knew that Donna’s father was a fire fighter, because one day during a special outing when we were with a group of bicycling Junior High School students and a teacher, we stopped at Donna Westoff’s house to get a drink of water.  On the walls in her house were different types of fire fighting treasures.  Donna explained that her father was a fire fighter…  That was the Spring of 1975 in Columbia, Missouri

Fast forward 16 years later (1991) at the Power Plant in the middle of nowhere in North Central Oklahoma.  Just about a year after the story I’m telling now…. I left the logic room and went to catch the elevator to the Control room.  When the doors opened, Tony Mena was in there with a bunch of college age students giving them a tour of the plant.  I entered the elevator and turned around to face the door as it closed.

As I was standing there, I suddenly became aware that the person standing next to me was staring right at me.  So, I turned to see who it was.  Standing next to me was someone that looked very familiar wearing a big grin as if she knew who I was.  I recognized her, and while my mind was going through filing cabinets of memories trying to index this particular person, I asked her, “Don’t I know you?”  She shook her head and said, “I’m Donna Westhoff!”

A High School picture of Donna Westhoff  who is on the Lower Left

A High School picture of Donna Westhoff who is on the Lower Left

As the elevator door opened and we stepped out, Donna and I began talking about what we were both doing there.  She was surprised to find that I had become an electrician at a power plant instead of some kind of scientist in a lab somewhere.  Donna was going to school in Stillwater where one of the best Fire Fighting Schools in the country is found.  Following in her father’s footsteps, I thought.  After a while I could tell that Tony was getting a little perturbed that the wisdom he was imparting about the fire protection system on the Turbine Generator wasn’t being absorbed by Donna, so I cut our conversation short.  It turned out that a very good friend of hers lived just two houses from where we lived, and her friend’s mother was my landlord.  Peggy Pickens.

Ok.  End of the side story, and another example of how I occasionally run into friends from my childhood in the most unexpected places (see the post:  “Relay Tests and Radio Quizzes with Ben Davis“).

So.  Scott Hubbard and I tried using the Graham Condenser and the Erlenmeyer Flask, but we quickly found out that this wasn’t big enough, to capture a large enough quantity.  So, we increased the size of the condenser by winding a garden hose around inside of a water bucket and filling it with ice.  Then we captured all the water that condensed in the hose.

A 5 gallon water bucket we used as our condenser with a garden hose and ice

A 5 gallon water bucket we used as our condenser with a garden hose and ice

When it finally came down to it.  Even though it was fun trying to do this experiment halfway up the 500 foot smoke stack, I never was able to figure out how to calculate the dew point given the data I had collected.

That’s when we decided to look at dew point sensors in the parts catalogs.  If we could stick a probe down into the precipitator and measure the dew point directly in the flue gas, that would be best.  After looking at a few in the catalog, Terry Blevins said he thought he could make one.  So, he went to work.

Terry Blevins

Terry Blevins

The next day he came in with an inch and a half conduit with hoses hanging out the back and a homemade sensor on the other end.  I won’t go into detail how the sensor was built because some day Terry may want to patent this thing because, as it turned out, it was so sensitive that it could detect my breathe from about a foot away.  If I breathed out of my mouth toward the sensor, it would detect the moisture in my breath.  This was perfect!

We went to work on the roof of the precipitator sticking the probe down into different sections of the precipitator.  It not only measured the moisture, it also had thermocouples on it that we used to accurately measure the temperature of the sensor as we varied the temperature by blowing cold air through the conduit using the same ice bucket and hose from before.

I could go into a lot of detail about how we performed our experiments, but it would only excite me and bore you.  So, let me just say that we came up with two very important results.  First of all, at full load when the humidity outside was at 100% the dew point was around 150 degrees!  A full 100 degrees below what the plant had originally assumed.  This was very important, because a lot of energy was spent trying to keep the flue gas above 250 degrees, and just by lowering it down to 210 degrees, still a safe amount above the dew point, that extra energy could be used to create electricity.

The second thing that we discovered was that the middle sections of the precipitator was a lot cooler inside than the outer fields.  We realized that this was caused by the air preheater coils that rotated between the flue gas and the Primary Air intake duct.  This took the last amount of heat safely possible from the exhaust and transferred it to the air going into the boiler so that it was already hot when it was used to burn the coal.  Because of the way the air preheater coils rotated, the part of the duct toward the middle of the precipitator was a lot cooler than the air on the outside.

Diagram of a boiler

Diagram of a boiler.  See the Air Preheater?  Flue Gas on one side and ambient air on the other

Lower temperatures in the precipitator increased the performance, so we decided that if we could mix the air around as it was going into the precipitator so that the outer edges were cooler, then it would increase the overall performance.  One suggestion was to put a mobile home in the duct work because in Oklahoma it was a known fact that mobile homes attracted tornadoes and it would probably cause a tornadic reaction that would mix up the flue gases.  — We just couldn’t figure out how to convince management to put a mobile home in the duct between the economizer and the precipitator.

Thanks to Terry’s handy dandy Dew Point Sensor, we were able to prove that the hopper and roof heaters could be lowered to where we set the thermostat at 180 degrees.  At that setting the heaters that used to always run at 250 degrees would remain off anytime the ambient temperature was above 45 degrees.  In Oklahoma, that is  most of the year.  This turned out to save over $350,000 per year in energy savings at a cost of about 1.5 cents per kilowatt-hour.  Not to mention the unknown savings from being able to lower the flue gas temperature by 40 degrees.

Sky Climbing in the Dark with Power Plant Boiler Rats

I suppose everyone at some point in their life wishes they could work at Disney World or some other place where there is one wonder after another throughout their day.  Working in the Power Plant was a lot like that…. sometimes…..  I have mentioned a few times that when you drove through the gate to the coal-fired Power Plant in North Central Oklahoma each morning, you never knew what was in store for that day.  It was often a surprise.  Sometimes the surprise was a wonder.  Sometimes it was well…. surreal.

This is a story about one day in October 1986 during an overhaul while I was a plant electrician, where I entered a world totally foreign to just about anything I had encountered before.  You may think this is an odd statement if you have read some of my other posts where I have found myself in oddly dangerous situations and my life was in the balance.  Well…. this is one of those stories, with a new twist.

As I said, we were on overhaul.  This meant that one of the two units was offline and major repairs were taking place to fix things that can only be done when the unit isn’t running.  The two major areas of repair are the Turbine Generator and the Boiler.  People come from the other plants to help out and get paid a lot of overtime working long hours to complete this feat.

At this time I was working on motors in the electric shop.  I had been removing the fan motors from the large General Electric Transformer for Unit 1.  Changing their bearings and testing them.  Then putting them back in place.  The transformer had 24 of these motors, so after the first few, the work was becoming pretty routine.

A Main Power Transformer

A Main Power Transformer

Somewhere between the 11th or 12th motor David McClure came into the shop.  I think he may have been on the labor crew at the time.  He had only been working at the plant for about 8 months.  He was a welder, so I think if he had been on labor crew, they had quickly moved him into the welding shop because anybody with welding skills were always in high demand.

David told me that Bill Bennett had told him to ask me to help out with a problem in the boiler.  Now.  when i was on the labor crew, I had been in the boiler during an overhaul.  I had worked on shaking tubes in the reheat section and cleaning the clinkers out of the economizer section.  You can read about these moments of mania in the posts:  “Bob Lillibridge Meets the Boiler Ghost” and “Cracking a Boiled Egg in the Boiler and Other Days You Wish You Could Take Back“.

During those times I knew that something was taking place in the superheat section of the boiler, but I wasn’t exactly sure what it was.  You see, even when I was in the bottom ash hopper when it was being sandblasted, there was a wooden floor that had been put in above the hopper so that you couldn’t see the boiler overhead.  This was the first time I was going to go into the boiler to actually work on something other than laying down the floor (which I had been lucky enough to do once when I was working on the labor crew).

Diagram of a boiler

Diagram of a boiler

So, I grabbed my tool bucket and David took me up to the main entrance into the boiler which was next to the door where Chuck Ross and Cleve Smith had been blown off of the landing by the Boiler Dragon six years earlier when I was a summer help (see the post:  “Where Do Knights of the Past go to Fight Dragons Today?“).  About 40 feet up from the concrete floor we climbed into the boiler.

This is where I first came face to face with Boiler Rats.  These rats live in a boiler when it is taken offline.  Shortly after the boiler is cooled down, these “boiler rats” move in and they spend the next 4 or 10 weeks (depending on the length of the overhaul), roaming around the boiler sniffing out boiler tubes that are in need of repair.

Some lights had been placed around the bottom of the boiler to shine up the 200 feet to the top of the boiler.  That is the height of a 20 story building.  Yes.  That’s right.  The inside of the boiler is as tall as a 20 story building.  I couldn’t really see what was going on up there toward the top, but there was a boiler rat standing right there in the middle of the wooden floor staring at me with the grin (or snarl) that is typical of a rat.  Not a cute rat like this:

Rat from the Movie Ratatouille

Rat from the Movie Ratatouille

Or even a normal rat like this:

Normal looking rat

Normal looking rat

No.  These rats looked like Ron Hunt wearing his hillbilly teeth.  More like this:

rat from kootation

rat picture taken from kootation.com

Yep.  Red eyes and all, only the whiskers were longer.  I would go into how the boiler rats smelled, but I didn’t want to get too personal….

Anyway, this one boiler rat that had been waiting for me said that he had just finished rigging up this sky climber so that he could take me up into the upper reaches of the dark to work on a sky climber that was stuck.  He had rigged this sky climber up so that it would pull up next to the one that was hung up by the bottom of the high pressure boiler tubes that were hanging out over the top of the boiler.

If you have ever seen Window washers going up and down the side of a building washing windows, then you know what a sky climber is.

A sky climber

A sky climber

You see, the boiler rats would ride these sky climbers up from the wooden floor to the boiler tubes hanging down from the ceiling of the boiler.  One had stopped working and they needed an electrician to go up and fix it so that they could continue working.  That was my job…. I carry a badge…. oh… wait… that’s Sergeant Friday on Dragnet…  I carry a tool bucket that doubles as a trash can and triples as a stool.

So, I climbed into the sky climber and up we went.  I could see faint lights up above me where boiler rats were working away cutting and welding boiler tubes.  As we took off, one of the boiler rats said that a little while just before I had arrived, someone from above had dropped a tool that came flying down and stuck right into the wooden plank floor.  It had landed about 10 feet from another boiler rat.  This answered a question that I had for some time…. it turned out to be true… Boiler Rats do have Guardian Angels too.

Anyway, Up into the darkness we went.  The boiler rat (I believe this one was called Rodney… as in Rodney Meeks) operated the sky climber as I just enjoyed the ride.  Looking down, I saw the spot lights getting smaller and dimmer.  Looking up, I saw us approaching a group of hanging boiler rats, all doing their stuff.  Some were resting.  Some were welding.  Some were looking off into space in a daze after having been in the boiler for so long they had forgotten their name.

There were names for these rats.  One was called T-Bone.  Another was called ET.  There was a guy there called Goosman.  Another boiler rat was called Frazier.  I think it was John Brien that was staring off into space at the time, or was it Butch Ellis.  Oh.  Now I remember.  Butch was on one sky climber staring off into space at the other sky climber where john Brien was staring back at him.

There were many other boiler rats there from other plants.  They were all hanging down from the top of the boiler on these sky climbers like fruit hanging from a tree in the dark.  Most of them paid no attention to my arrival.

We pulled up to the sky climber that was broken.  I swung over the couple of feet from the one climber to the other, with a straight drop of about 160 feet down to the floor.  I looked below so that I could calculate that in case I slipped and fell, how I would try to swing my body just as i fell so as to miss any boiler rats below.  I wouldn’t have wanted to upset any boiler rat families by falling on their boiler rat breadwinners.

By Swinging my tool bucket toward the other sky climber, I followed the momentum so that it carried me over to the other platform, where I swung my bucket over the railing and climbed in.  Once settled, I took out my flashlight so that I could look around my new six or eight foot world.

I tried the controls, and sure enough… nothing happened.  Remembering my dropped flashlight almost exactly three years earlier that had almost cost me my life (see post:  “Angel of Death Passes By The Precipitator Door“), I took extra care not to drop any tools on some unsuspecting souls below.

I took out my multimeter and checked the voltage coming into the main junction box and found that the problem was in the connect where the cable came into the box.  So, this turned out to be a fairly easy fix.  The cord had been pulled by something (geez.  It was only hanging down 200 feet.  I don’t know what might have been pulling on it) and had worked its way out of the connections.

I told Rod that I would be able to fix this quickly and went to work removing the connector from the cable, cutting off the end and preparing it to be reconnected to the connector.  It was about that time that I became aware of something that had been going on since I had arrived, I just hadn’t noticed it.  Maybe it was a remark one of the boiler rats had said.  I think it was Goosman talking to Opal.  He said something like “That George Jones can sure sing.”

That was it.  That was the extra amount of strangeness that I had been experiencing since I had arrived.  Someone had a radio that was playing country music.  The music was echoing throughout the boiler so that all the hanging boiler rats could listen to it.  I realized that Butch and Brien weren’t just staring off into space at each other.  They were experiencing a moment of country music meditational bliss.  The moment the current song was over someone off in the distance that I couldn’t see in the dark or because they were stuck up inside a rack of boiler tubes, let out a hoot of satisfaction.  Butch and Brien rose and went back to work.

I have heard that it takes a village to raise a child…. Hillary Clinton even wrote a children’s book with that title once.  I experienced something similar but strangely different that day in October 1986.  A village of raised boiler rats, who for a moment, it seemed, some had stopped to sit by the welder’s campfire to listen to the tales being woven by the country music singer on the radio.

There was a sincere camaraderie between these individual boiler rats.  A culture had grown inside this boiler that was completely foreign to me.  I suppose the same thing happens to soldiers who put their lives on the line to protect our country.  When you are in a position where one wrong step and someone dies.  You bond to those around you in a unique way.

I am grateful for my brief encounter with the boiler rats that day.  They had invited me into their lair because they needed my help.  I was glad to have been able to fix there problem and be quickly on my way.

Though I never had a desire to become a boiler rat myself, during the many years where I walked alone throughout the inside of the precipitator I would sometimes hear the sounds coming down through the economizer from the Superheat section of the boiler.  Maybe a faint hint of country music.  I  knew that the boiler rat village had come together again like a group of nomads that meet every winter to share stories.  Sometimes I would take the plate straightening tool I carried and banged on the plates wondering if any of them would hear me way back up in the boiler.  I doubt anyone ever did.