Tag Archives: Empowerment Tool

A Chance for Power Plant Men to Show Their Quality

Originally posted June 21, 2014.  I updated dates and added some new things.

I don’t know if anyone of us knew what to expect  Wednesday morning January 13 , 1993 when we were told to go to a meeting in the break room that was going to take all day.  We were supposed to be in some kind of training.  Everyone at the plant was going to have to go through whatever training we were having.  Training like this always seemed funny to me for some reason.  I think it was because the hodgepodge of welders, mechanics, machinists, electricians and Instrument and Controls guys seemed so out of place in their coal-stained worn out old jeans and tee shirts.

I remember walking into the break room and sitting down across the table from Paul Mullon.  He was a new chemist at the time.  He had just started work that day.  We became friends right away.  Scott Hubbard, Paul and I were carpooling buddies.  He always looked a lot younger than he really was:

Paul Mullon when he was 90 years old

My favorite picture of Paul Mullon when he was 90 years old

See how much younger he looks?  — Oh.  That’s what I would always say about Gene Day because he was always as old as dirt.  Even when he was young.  Paul is only four years older than I am, but he still looks like he’s a lot younger than 70.  Even his great great grand daughter is saluting him in this photo.  Actually.  I love Paul Mullon as if he was my own brother.  He still looks younger than my younger brother who is four years younger than I am.  People used to think that he was his own daughter’s boyfriend.

When our training began, the plant manager at the coal-fired power plant in North Central Oklahoma, Ron Kilman came in and told us that we were going to learn about the “Quality Process”.  He explained that the Quality Process was a “Process”, not a “Program” like the “We’ve Got The Power Program” we had a few years earlier.  This meant that it wasn’t a one time thing that would be over any time soon.  The Quality Process was something that we will be able to use the rest of our lives.

At this point they handed out a blue binder to each of us.  The title on the front said, “QuickStart – Foundations of Team Development”.  A person from a company called “The Praxis Group”, Rick Olson from Utah (when I originally posted this last year, I couldn’t remember his name.  Then I found my Quality book and it had Rick’s name in it).  I had looked Rick Olson up to see if he was a member of CompuServe and there was Rick Olson from Ogden, Utah.  When I asked him if he was from Ogden, he told me he was from Provo, Utah.

One of the first things Rick asked us to do was to break up into teams of four or five and we were asked to come up with 3 facts about ourselves.  Two of which were true and one that was false.  Then our team mates were asked to vote on which fact they thought was the false one.  The only one I remember from that game was that Ben Brandt had dinner with the Bill Clinton on one occasion when he was Governor of Arkansas.  — At least, I think that was what it was…  Maybe that was the fact that was false.

The purpose of this game was to get to know each other….  Well….  We had all been working with each other for the past 15 years, so we all knew each other pretty good by that time.  Except for someone new like Paul.  I think my false fact was that I had hitchhiked from Columbia, Missouri to New Orleans when I was in college.  — That was an easy one.  Everyone knew that I had hitchhiked to Holly Springs National Forest in Mississippi, not New Orleans.

Anyway, after we knew each other better, we learned about the different roles that members of our teams would have.  Our “Quality” teams were going to be our own crews.  Each team was going to have a Leader, a Facilitator, a Recorder, and if needed (though we never really needed one), a Logistics person.  The Logistics person was just someone that found a place where the team could meet.  We always just met in the Electric Shop office.  I wanted to be “Facilitator”.

We learned about the importance of creating Ground Rules for our Quality Meetings.  One of the Ground rules we had was to be courteous to each other.  Another was to “Be willing to change” (I didn’t think this really belonged as a “Ground Rule”.  I thought of it more as a “Nice to have” given the present company).  Another Ground Rule was to “Discuss – Don’t Lecture”.  One that I thought was pretty important was about “Confidentiality”.  We had a ground rule that essentially said, “What happens in a team meeting… Stays in the team meeting.”

I recently found a list of the Quality teams that were formed at our plant.  Here is a list of the more interesting names and which team it was:  Barrier Reliefs (that was our team — Andy Tubbs team).  Rolaids (Ted Holdges team).  Elmore and the Problem Solvers (Stanley Elmore’s team… of course).  Spit and Whittle (Gerald Ferguson’s Team).  Foster’s Mission (Charles Foster’s team).  Sooner Elite (Engineer’s team).  Boiler Pukes (Cleve’s Smith’s Welding crew I believe).  Quality Trek (Alan Kramer’s Team).  Designing Women (Linda Dallas’s Team).  There were many more.

I think all the Power Plant Quality Teams had the same “Mission Statement”.  It was “To Meet or Exceed our Customer’s Expectations”.  I remember that the person that was teaching all this stuff to us was really good at motivating us to be successful.  As we stepped through the “QuickStart” training manual, the Power Plant He-men were beginning to see the benefit of the tools we were learning.  There were those that would have nothing to do with anything called “Quality”, just because… well…. it was a matter of principle to be against things that was not their own idea.

Later they gave us a the main Quality binder that we used for our team meetings:

Our Quality Manual

Our Quality Manual

When we began learning about the different quality tools that we could use to solve problems, I recognized them right away.  I hadn’t learned any “Quality Process” like Six Sigma at that time, but I was about to graduate from Loyola University in New Orleans in a couple of months with a Masters of Religious Education (MRE) where I had focused my courses on Adult Education.  Half of my classes were about Religious topics, and the other half was about how to teach adults.  The same methods  were used that we learned about in this training.

It just happened that I had spent the previous three years learning the same various quality tools that the Power Plant Men were being taught.  We were learning how to identify barriers to helping our customers and breaking them down one step at at time.  We also learned how to prioritize our efforts to break down the barriers by looking at where we had control and who we were trying to serve… such as ourselves or others.  I remember we tried to stay away from things that were “Self Serving.”

We learned how to do something called a “Barrier Walk”.  This was where we would walk around the plant almost as if we were looking at it for the first time to find barriers we hadn’t noticed before.  We also learned how to brainstorm ideas by just saying whatever came to our minds no matter how silly they may sound without anyone putting anyone down for a dumb idea.  Rick called each barrier that your customer encountered a “SPLAT”.  Our goal was to reduce “SPLAT”s.  I think at one point we even discussed having stickers that said “SPLAT” on them that we could put on barriers when we located them.

When we implemented a quality idea, we were taught to do a “Things Gone Right, Things Gone Wrong” exercise so that we could improve future projects.  This had two columns.  On one side you listed all the good things (which was generally fairly long), and on the other, all the things that went wrong (which was a much shorter list).  This was done so that we could consider how to avoid the things that didn’t work well.

We learned how to make proposals and turn them into a team called “The Action Team”.  I was on this team as the Facilitator for the first 6 months.  Sue Schritter started out as our Action Team Leader.  The other Action team members in the beginning were:  Richard Allen, John Brien, Jim Cave, Robert Grover, Phil Harden, Alan Hetherington, Louise Kalicki, Bruce Klein, Johnnie Keys, Kerry Lewallen, Ron Luckey and George Pepple.

The Power Plant Men learned that there were five S’s that would cause a proposal to fail.

One of those was “Secrecy”.  If you are going to propose something that affects others, then you have to include them in the decision making up front or else even if you think it’s a great idea, others may have legitimate reasons for not implementing it, and you would have wasted your time.

The second was “Simplicity”.  It follows along with Secrecy in that if you just threw the idea together without considering all the others that will be affected by the change, then the proposal would be sent back to you for further study.

The third was “Subjectivity”.  This happens when something just sounds like a good idea.  All the facts aren’t considered.  The solutions you may be proposing may not be the best, or may not even really deal with the root of a problem.  You might even be trying to solve a problem that doesn’t really exist, or is such a small problem that it isn’t worth the effort.

The fourth was “Superficiality”.  This happens when the outcomes from the proposal are not carefully considered.  Things like, what are the long term effects.  Or, What is the best and worst case of this proposal…  Those kind of things are not considered.

The last one is “Self-Serving”.  If you are doing this just because it benefits only your own team and no one else, then you aren’t really doing much to help your customers.  Most likely it may even be causing others an inconvenience for your own benefit.

I know this is becoming boring as I list the different things we learned that week in 1993.  Sorry about that.  I will cut it short by not talking about the “Empowerment Tool” that we learned about, or even the importance of Control Charts and go right to the best tool of them all.  One that Power Plant Men all over can relate to.  It is called the “Fishbone Diagram”.

Fishbone Diagram

Fishbone Diagram

There are few things that Power Plant Men like better than Fishing, so when we began to learn about the Fishbone diagram I could see that even some of the most stubborn skeptics couldn’t bring themselves to say something bad about the Fishbone diagram.  Some were even so enthusiastic that they were over-inflating the importance (and size) of their Fishbone diagrams!  — This along with the Cause and Effect chart were very useful tools in finding the root cause of a problem (or “barrier” as we referred to them).

All in all, this was terrific training.  A lot of good things were done as a result to make things more efficient at the plant because of it.  For the next year, the culture at the plant was being molded into a quality oriented team.  This worked well at our particular plant because the Power Plant Men employed there already took great pride in their work.  So, the majority of the crews fell in behind the effort.  I know of only one team at the coal yard where the entire team decided to have nothing to do with it.

When training was done, I told Rick that I thought that his company would really benefit by having a presence on the Internet.  As I mentioned in last week’s post “Turning the Tables on a Power Plant Interloper”  During this time the World Wide Web did not have browsers and modems did not have the bandwidth at this point, so CompuServe was the only service available for accessing the Internet for the regular population.

I asked Rick if he had heard about CompuServe.  He said he had not heard of it.  I told him that I thought the Internet was going to be the place where training would be available for everyone eventually and he would really benefit by starting a “Quality” Forum on CompuServe, because there wasn’t anything like that on the Internet at the time.  I remember the puzzled look he gave me as he was leaving.  I realized he didn’t have a clue what I was talking about.  Few people knew about the Internet in those days….

I have a number of stories about how the Quality Process thrived at the Power Plant over the next year that I will share.  I promise those stories will not be as boring as this one.

Advertisements

The Power Plant Smokestack Third Rail is the Lifesaver

It was quite a site at the coal-fired Power Plant in North Central Oklahoma to see a 400 pound man climbing up the ladder to the 250 foot level (halfway) up the smokestack only to climb halfway down again on the track the elevator used to go up and down the smokestack. I was on labor crew then and I remember thinking, I’m sure glad that’s not me.

A small tour of people from Oklahoma City had come to the plant and one of the engineers was showing them around. I think Allen Gould may remember who it was. I’m not saying it was Allen, I’m just thinking that he was around at that time.

Power Plant Engineer Allen Gould

Power Plant Engineer Allen Gould

I think that day the wind was blowing rather hard and when the elevator was descending (going down) the stack, the power cable somehow blew over into the path of the elevator and it was caught under the roller which brought the elevator to an abrupt halt. Unfortunately. in this instance, trying to free fall the elevator manually to bring it down wouldn’t work since when the brakes were released, the elevator wouldn’t move because it was really stuck right where it was.

A person that worked for the Alimak elevator company was called in from Wichita Kansas 100 miles to the north of the Power plant, which meant that it took almost 2 hours for the person to arrive at the plant. When he did, he turned out to be the largest elevator repairman I had ever seen. He had to climb up 250 feet up a ladder to the landing, then back down again about 100 feet to the elevator to rescue the people from the elevator.

I first found out about it when someone pointed out the large figure of a man about halfway up to the first landing on the smokestack ladder. He had stopped for a rest and was leaning back on his lanyard that was attached to the ladder. When we arrived in the maintenance shop, Marlin McDaniel explained the situation to us. I think it took well over three hours for this man to take each person out of the hatch in the top of the elevator, then climb with them up the elevator track to the landing, and then take them down the ladder 250 feet to the ground. I think one of them was a lady, and two were men.

The stack elevator is a small box with a capacity to carry 3 people or a weight of 900 pounds. It is crowded enough with only two people in it, but three is always a crowd (as the saying goes, “Two’s company, Three’s a crowd”). That phrase definitely is true with the stack elevator.

 

These are the 500 foot smoke stacks

These are the 500 foot smoke stacks

At the time, I didn’t realize that one day I would be an electrician that took care of the smoke stack elevators. Actually, I never gave it a thought about what sort of equipment electricians repaired or maintained. It turned out that electricians worked on anything that had electric power going to it. That’s pretty much anything mechanical.

Electricians would work on the motors while the mechanics would work on the pumps, fans and valves attached to the end of the motors. When it came to the stack elevators, it was generally left up to the electricians to do the majority of the work. We inspected the elevators each month, and when they broke down, we were called to repair them.

When the boiler elevators broke down, it seemed as if I was the person of choice to ask to climb the boiler to the roof to fix it. The elevator controls were located on the top of the boiler, so I would usually end up climbing the stairs to the top cleaning door contacts on the way up. It happens that the boilers are 250 feet tall. So, the middle landing on the stack elevator is about the same height as the boiler as you can see in the picture above.

Bill Bennett, our A Foreman, would always add when he was telling me to go fix the elevator…. “You like climbing all those stairs anyway.” What could I say? “Sure Bill! I’ll go see what I can do.”

I think in the back of my mind I knew the day was coming when I was going to have to climb the stack elevator ladder to rescue someone. I had already climbed it a few times to fix some conduit that had come loose that ran up the smokestack next to the ladder, so I knew what it was like to go straight up a 500 foot ladder to the top of the smokestack. Luckily when my turn came around for a rescue, I only had to go halfway up. There were 4 people stuck on the smokestack.

Unlike the large elevator repairman from Wichita, I didn’t have to climb down the elevator track to reach the elevator. It had malfunctioned right at the 250 foot level when the group was ready to come back down from their semi-lofty visit of one of the Power Plant Smokestacks. My only task was to climb up, fix the elevator and bring the group safely to the ground.

I grabbed some tools from my tool bucket that I thought would be useful. A couple of different size screwdrivers (one large one and one small), my multimeter, fuse pullers, and three wrenches, (7/16, 1/2 and 9/16 inch). I put them in a bag that looked like a feed bag for a horse. It had a rope with a hook on it.

A tool Bag, only ours had a hook on the top of the handle

A tool Bag, only ours had a hook on the top of the handle

I figured I didn’t want to take anything I didn’t need, so I didn’t put all 40 pounds of tools from my tool bucket into the bag. Just those things I thought I might need. I had my handy dandy little crescent wrench in my pocket and my baby screwdriver in my pocket protector on my tee shirt.

4 inch crescent wrench

4 inch crescent wrench

I took a safety belt off of the coat rack by the door in the electric shop and put it on. I figured I could hook the tool bag to one of the rings while I was climbing the ladder up the smokestack. With only the safety belt and the fairly lightweight tool bag, I headed out to the Unit 2 smokestack. Oh yeah. I was carrying one other nifty device as well.

when I arrived, Doug Link was standing at the bottom with some other people. Doug explained that George Bohn and some other engineers from the City (meaning Oklahoma City) were trying to come down, but the elevator wasn’t working. Luckily they had carried a two-way radio with them when they went up (which was a regular safety precaution since smoke signals would largely go unnoticed coming from a smokestack).

I understand from watching movies that when you climb onto the tracks in a subway in New York City or some other large town with a subway, that you are supposed to avoid the “Third Rail”. After Doug Link had explained to me the problem, the first thing I did was to grab the third rail on the ladder that ran up the smoke stack.

Doug Link

Doug Link

You see. Running right up the middle of the ladder is an extra rail. This is what keeps you alive while you climb a very high ladder. Think about it. If you were to try to climb a ladder 250 or 500 feet straight up, what’s going to happen to you? Your arms and legs are going to start getting wobbly. You are going to become short of breath, and your head is going to start to swim some either from hyperventilating or the lack of oxygen… I haven’t figured out which yet.

Anyway, at some point, something is going to stop working. Your fingers are going to miss their grip on the next rung or your work boot is going to slip off of the rung and you will fall. If there is nothing to stop you, then you are going all the way to the ground.

That is why the third rail is added to the ladder. It is there so that you can tie your safety belt to it. It keeps you from falling when you slip, and it also allows you to take a rest when you need it without the worry that if some part of your body momentarily malfunctions, you won’t fall to your death.

A ladder with a safety belt rail

A ladder with a safety belt rail

Here is an example of a ladder with a device similar to the one we had on our stack ladders. I took the nifty device I had brought with me and hooked it into the third rail of the ladder and clipped the tool bag to the other metal loop on my safety belt (this was before we had safety harnesses). Then I began my trek to the landing.

As I ascended (went up) the ladder I told myself that this was no higher than climbing the stairs on the boiler to go to the elevator penthouse to fix the boiler elevators. I do that all the time. This should not be so hard. Just as I would help myself climb the stairs, I could use my hands to pull myself up the ladder distributing the work between my arms and legs as needed so that when one set was becoming too tired, I would have the other set do more of the work (arms and legs I mean).

I told myself it would probably be best if I didn’t stop until I arrived at the 250 foot landing, because I thought that if I did stop for a rest, my legs would get all wobbly. As long as I kept climbing, they didn’t have time for that nonsense. So, I huffed and puffed, and kept focusing on each rung of the ladder as I climbed.

When I reached the 250 foot landing, I swung my tool bag over onto the grating and unclipped my belt from the third rail and sat down with my feet still dangling off the edge of the grating where the ladder came through and rested for a few moments.

George Bohn and the other castaways were around the other side of the stack. They had not realized I had arrived yet. After I caught my breath, I climbed up to the top of the elevator and opened the control panel to see why the elevator was not working. I switched it to manual, and tried to operate it from the top of the elevator, but it didn’t budge.

I used my multimeter to check the circuits and quickly found that one of the fuses had blown out. Unfortunately, I didn’t bring a spare fuse with me, and there wasn’t one in the control box, so there wasn’t much I could do to fix the elevator controls at this point.

I hollered for George and he came around the walkway to the elevator. I explained to him that the fuse to the controls was blown and that I could either climb all the way back down the ladder to the ground to get one, or, I could manually “drop” the elevator down with them in it to the ground. The lady with them didn’t care much for that idea.

I explained that I regularly drop test the elevator and I would be able to let the brake loose long enough for the elevator to go down a couple of feet at a time. After doing that about 125 times, we would be safely on the ground. That seemed to satisfy them, so they entered the elevator and closed the door, while I remained on the top of the elevator.

A typical Stack Elevator. Not the same brand as ours.

A typical Stack Elevator. Not the same brand as ours.

I took my large screwdriver out of the tool bag and pried it between the motor and a latch on the brake. This way, I just had to pull out on the screwdriver to release the brake on the elevator until it began to free-fall toward the ground. I turned my head to look up at the elevator track so I could make sure I didn’t let the elevator drop too far. If I did, then my heroic attempt to rescue my elevator hostages would quickly turn from an “atta-boy” into an “Uh-Oh!”

You see, if I let the elevator drop more than 3 feet (or so), then the safeties on the elevator (known as “dogs”) would set. This would bring the elevator to an abrupt halt. It was designed to stop a falling elevator by instantly locking the elevator to the tracks.

If the dogs were to be set on the stack elevator, the only way to release them is to take the cover off of a gear box and start manually cranking the elevator up about 3 feet until the dogs reset. This was a slow process that usually took about 30 minutes, and if I didn’t go up far enough to actually reset the dogs, as soon as we continued going back down, the dogs would set again and I would have to repeat the process.

So, like the tortoise, I decided that slow and steady wins the race. I was not going to drop the elevator more than a foot and a half each time. We would take our time going down.

The first time I released the brakes and the elevator began to free-fall, I heard the lady below me in the elevator let out a loud gasp. I know the guys were gasping as well, they just had to be more quiet about it. I know I was gasping each time on the top of the elevator and I had done this probably 20 times before when we did the elevator drop tests (See the post “After Effects of Power Plant Drop Tests“).

After about 10 minutes the elevator was safely back on the ground and so were the engineers. Doug Link came up to me and said with an excited voice, “It took you only 4 minutes and 23 seconds to climb up the ladder! That’s incredible! I timed you!” I said, “That’s about right. One second per foot.”

I went back to the shop and found three fuses for the one that had blown on the elevator. I climbed back on the elevator and opened the control box and replaced the bad one. Then I placed the other two in the control box. I figured this way, if this fuse were to blow again, then at least the electrician could just replace it, and not have to manually ride the elevator to the ground again.

I tested the elevator by riding it up and down the stack a few times and everything worked just fine. I figured that this must have just happened because George Bohn was trying to show off to some cute engineer. That’s just George’s luck. To find out more adventures with George, you can read this post: “Bohn’s Boner and the Power Plant Precipitator Computer“.

A Chance for Power Plant Men to Show Their Quality

Originally posted June 21, 2014.  I updated dates and added some new things.

I don’t know if anyone of us knew what to expect  Wednesday morning January 13 , 1993 when we were told to go to a meeting in the break room that was going to take all day.  We were supposed to be in some kind of training.  Everyone at the plant was going to have to go through whatever training we were having.  Training like this always seemed funny to me for some reason.  I think it was because the hodgepodge of welders, mechanics, machinists, electricians and Instrument and Controls guys seemed so out of place in their coal-stained worn out old jeans and tee shirts.

I remember walking into the break room and sitting down across the table from Paul Mullon.  He was a new chemist at the time.  He had just started work that day.  We became friends right away.  Scott Hubbard, Paul and I were carpooling buddies.  He always looked a lot younger than he really was:

Paul Mullon when he was 90 years old

My favorite picture of Paul Mullon when he was 90 years old

See how much younger he looks?  — Oh.  That’s what I would always say about Gene Day because he was always as old as dirt.  Even when he was young.  Paul is only four years older than I am, but he still looks like he’s a lot younger than 70.  Even his great great grand daughter is saluting him in this photo.  Actually.  I love Paul Mullon as if he was my own brother.  He still looks younger than my younger brother who is four years younger than I am.  People used to think that he was his own daughter’s boyfriend.

When our training began, the plant manager at the coal-fired power plant in North Central Oklahoma, Ron Kilman came in and told us that we were going to learn about the “Quality Process”.  He explained that the Quality Process was a “Process”, not a “Program” like the “We’ve Got The Power Program” we had a few years earlier.  This meant that it wasn’t a one time thing that would be over any time soon.  The Quality Process was something that we will be able to use the rest of our lives.

At this point they handed out a blue binder to each of us.  The title on the front said, “QuickStart – Foundations of Team Development”.  A person from a company called “The Praxis Group”, Rick Olson from Utah (when I originally posted this last year, I couldn’t remember his name.  Then I found my Quality book and it had Rick’s name in it).  I had looked Rick Olson up to see if he was a member of CompuServe and there was Rick Olson from Ogden, Utah.  When I asked him if he was from Ogden, he told me he was from Provo, Utah.

One of the first things Rick asked us to do was to break up into teams of four or five and we were asked to come up with 3 facts about ourselves.  Two of which were true and one that was false.  Then our team mates were asked to vote on which fact they thought was the false one.  The only one I remember from that game was that Ben Brandt had dinner with the Bill Clinton on one occasion when he was Governor of Arkansas.  — At least, I think that was what it was…  Maybe that was the fact that was false.

The purpose of this game was to get to know each other….  Well….  We had all been working with each other for the past 15 years, so we all knew each other pretty good by that time.  Except for someone new like Paul.  I think my false fact was that I had hitchhiked from Columbia, Missouri to New Orleans when I was in college.  — That was an easy one.  Everyone knew that I had hitchhiked to Holly Springs National Forest in Mississippi, not New Orleans.

Anyway, after we knew each other better, we learned about the different roles that members of our teams would have.  Our “Quality” teams were going to be our own crews.  Each team was going to have a Leader, a Facilitator, a Recorder, and if needed (though we never really needed one), a Logistics person.  The Logistics person was just someone that found a place where the team could meet.  We always just met in the Electric Shop office.  I wanted to be “Facilitator”.

We learned about the importance of creating Ground Rules for our Quality Meetings.  One of the Ground rules we had was to be courteous to each other.  Another was to “Be willing to change” (I didn’t think this really belonged as a “Ground Rule”.  I thought of it more as a “Nice to have” given the present company).  Another Ground Rule was to “Discuss – Don’t Lecture”.  One that I thought was pretty important was about “Confidentiality”.  We had a ground rule that essentially said, “What happens in a team meeting… Stays in the team meeting.”

I recently found a list of the Quality teams that were formed at our plant.  Here is a list of the more interesting names and which team it was:  Barrier Reliefs (that was our team — Andy Tubbs team).  Rolaids (Ted Holdges team).  Elmore and the Problem Solvers (Stanley Elmore’s team… of course).  Spit and Whittle (Gerald Ferguson’s Team).  Foster’s Mission (Charles Foster’s team).  Sooner Elite (Engineer’s team).  Boiler Pukes (Cleve’s Smith’s Welding crew I believe).  Quality Trek (Alan Kramer’s Team).  Designing Women (Linda Dallas’s Team).  There were many more.

I think all the Power Plant Quality Teams had the same “Mission Statement”.  It was “To Meet or Exceed our Customer’s Expectations”.  I remember that the person that was teaching all this stuff to us was really good at motivating us to be successful.  As we stepped through the “QuickStart” training manual, the Power Plant He-men were beginning to see the benefit of the tools we were learning.  There were those that would have nothing to do with anything called “Quality”, just because… well…. it was a matter of principle to be against things that was not their own idea.

Later they gave us a the main Quality binder that we used for our team meetings:

Our Quality Manual

Our Quality Manual

When we began learning about the different quality tools that we could use to solve problems, I recognized them right away.  I hadn’t learned any “Quality Process” like Six Sigma at that time, but I was about to graduate from Loyola University in New Orleans in a couple of months with a Masters of Religious Education (MRE) where I had focused my courses on Adult Education.  Half of my classes were about Religious topics, and the other half was about how to teach adults.  The same methods  were used that we learned about in this training.

It just happened that I had spent the previous three years learning the same various quality tools that the Power Plant Men were being taught.  We were learning how to identify barriers to helping our customers and breaking them down one step at at time.  We also learned how to prioritize our efforts to break down the barriers by looking at where we had control and who we were trying to serve… such as ourselves or others.  I remember we tried to stay away from things that were “Self Serving.”

We learned how to do something called a “Barrier Walk”.  This was where we would walk around the plant almost as if we were looking at it for the first time to find barriers we hadn’t noticed before.  We also learned how to brainstorm ideas by just saying whatever came to our minds no matter how silly they may sound without anyone putting anyone down for a dumb idea.  Rick called each barrier that your customer encountered a “SPLAT”.  Our goal was to reduce “SPLAT”s.  I think at one point we even discussed having stickers that said “SPLAT” on them that we could put on barriers when we located them.

When we implemented a quality idea, we were taught to do a “Things Gone Right, Things Gone Wrong” exercise so that we could improve future projects.  This had two columns.  On one side you listed all the good things (which was generally fairly long), and on the other, all the things that went wrong (which was a much shorter list).  This was done so that we could consider how to avoid the things that didn’t work well.

We learned how to make proposals and turn them into a team called “The Action Team”.  I was on this team as the Facilitator for the first 6 months.  Sue Schritter started out as our Action Team Leader.  The other Action team members in the beginning were:  Richard Allen, John Brien, Jim Cave, Robert Grover, Phil Harden, Alan Hetherington, Louise Kalicki, Bruce Klein, Johnnie Keys, Kerry Lewallen, Ron Luckey and George Pepple.

The Power Plant Men learned that there were five S’s that would cause a proposal to fail.

One of those was “Secrecy”.  If you are going to propose something that affects others, then you have to include them in the decision making up front or else even if you think it’s a great idea, others may have legitimate reasons for not implementing it, and you would have wasted your time.

The second was “Simplicity”.  It follows along with Secrecy in that if you just threw the idea together without considering all the others that will be affected by the change, then the proposal would be sent back to you for further study.

The third was “Subjectivity”.  This happens when something just sounds like a good idea.  All the facts aren’t considered.  The solutions you may be proposing may not be the best, or may not even really deal with the root of a problem.  You might even be trying to solve a problem that doesn’t really exist, or is such a small problem that it isn’t worth the effort.

The fourth was “Superficiality”.  This happens when the outcomes from the proposal are not carefully considered.  Things like, what are the long term effects.  Or, What is the best and worst case of this proposal…  Those kind of things are not considered.

The last one is “Self-Serving”.  If you are doing this just because it benefits only your own team and no one else, then you aren’t really doing much to help your customers.  Most likely it may even be causing others an inconvenience for your own benefit.

I know this is becoming boring as I list the different things we learned that week in 1993.  Sorry about that.  I will cut it short by not talking about the “Empowerment Tool” that we learned about, or even the importance of Control Charts and go right to the best tool of them all.  One that Power Plant Men all over can relate to.  It is called the “Fishbone Diagram”.

Fishbone Diagram

Fishbone Diagram

There are few things that Power Plant Men like better than Fishing, so when we began to learn about the Fishbone diagram I could see that even some of the most stubborn skeptics couldn’t bring themselves to say something bad about the Fishbone diagram.  Some were even so enthusiastic that they were over-inflating the importance (and size) of their Fishbone diagrams!  — This along with the Cause and Effect chart were very useful tools in finding the root cause of a problem (or “barrier” as we referred to them).

All in all, this was terrific training.  A lot of good things were done as a result to make things more efficient at the plant because of it.  For the next year, the culture at the plant was being molded into a quality oriented team.  This worked well at our particular plant because the Power Plant Men employed there already took great pride in their work.  So, the majority of the crews fell in behind the effort.  I know of only one team at the coal yard where the entire team decided to have nothing to do with it.

When training was done, I told Rick that I thought that his company would really benefit by having a presence on the Internet.  As I mentioned in last week’s post “Turning the Tables on a Power Plant Interloper”  During this time the World Wide Web did not have browsers and modems did not have the bandwidth at this point, so CompuServe was the only service available for accessing the Internet for the regular population.

I asked Rick if he had heard about CompuServe.  He said he had not heard of it.  I told him that I thought the Internet was going to be the place where training would be available for everyone eventually and he would really benefit by starting a “Quality” Forum on CompuServe, because there wasn’t anything like that on the Internet at the time.  I remember the puzzled look he gave me as he was leaving.  I realized he didn’t have a clue what I was talking about.  Few people knew about the Internet in those days….

I have a number of stories about how the Quality Process thrived at the Power Plant over the next year that I will share.  I promise those stories will not be as boring as this one.

The Power Plant Smokestack Third Rail is the Lifesaver

Originally posted November 29, 2014:

It was quite a site at the coal-fired Power Plant in North Central Oklahoma to see a 400 pound man climbing up the ladder to the 250 foot level (halfway) of the smokestack only to climb halfway down again on the track the elevator used to go up and down the smokestack. I was on labor crew then and I remember thinking, I’m sure glad that’s not me.

A small tour of people from Oklahoma City had come to the plant and one of the engineers was showing them around. I think Allen Gould may remember who it was. I’m not saying it was Allen, I’m just thinking that he was around at that time.

Power Plant Engineer Allen Gould

Power Plant Engineer Allen Gould

I think that day the wind was blowing rather hard and when the elevator was descending (going down) the stack, the power cable somehow blew over into the path of the elevator and it was caught under the roller which brought the elevator to an abrupt halt. Unfortunately. in this instance, trying to free fall the elevator manually to bring it down wouldn’t work since when the brakes were released, the elevator wouldn’t move because it was really stuck right where it was.

A person that worked for the Alimak elevator company was called in from Wichita Kansas 100 miles to the north of the Power plant, which meant that it took almost 2 hours for the person to arrive at the plant. When he did, he turned out to be the largest elevator repairman I had ever seen. He had to climb up 250 feet up a ladder to the landing, then back down again about 100 feet to the elevator to rescue the people from the elevator.

I first found out about it when someone pointed out the large figure of a man about halfway up to the first landing on the smokestack ladder. He had stopped for a rest and was leaning back on his lanyard that was attached to the ladder. When we arrived in the maintenance shop, Marlin McDaniel explained the situation to us. I think it took well over three hours for this man to take each person out of the hatch in the top of the elevator, then climb with them up the elevator track to the landing, and then take them down the ladder 250 feet to the ground. I think one of them was a lady, and two were men.

The stack elevator is a small box with a capacity to carry 3 people or a weight of 900 pounds. It is crowded enough with only two people in it, but three is always a crowd (as the saying goes, “Two’s company, Three’s a crowd”). That phrase definitely is true with the stack elevator.

 

These are the 500 foot smoke stacks

These are the 500 foot smoke stacks

At the time, I didn’t realize that one day I would be an electrician that took care of the smoke stack elevators. Actually, I never gave it a thought about what sort of equipment electricians repaired or maintained. It turned out that electricians worked on anything that had electric power going to it. That’s pretty much anything mechanical.

Electricians would work on the motors while the mechanics would work on the pumps, fans and valves attached to the end of the motors. When it came to the stack elevators, it was generally left up to the electricians to do the majority of the work. We inspected the elevators each month, and when they broke down, we were called to repair them.

When the boiler elevators broke down, it seemed as if I was the person of choice to ask to climb the boiler to the roof to fix it. The elevator controls were located on the top of the boiler, so I would usually end up climbing the stairs to the top cleaning door contacts on the way up. It happens that the boilers are 250 feet tall. So, the middle landing on the stack elevator is about the same height as the boiler as you can see in the picture above.

Bill Bennett, our A Foreman, would always add when he was telling me to go fix the elevator…. “You like climbing all those stairs anyway.” What could I say? “Sure Bill! I’ll go see what I can do.”

I think in the back of my mind I knew the day was coming when I was going to have to climb the stack elevator ladder to rescue someone. I had already climbed it a few times to fix some conduit that had come loose that ran up the smokestack next to the ladder, so I knew what it was like to go straight up a 500 foot ladder to the top of the smokestack. Luckily when my turn came around for a rescue, I only had to go halfway up. There were 4 people stuck on the smokestack.

Unlike the large elevator repairman from Wichita, I didn’t have to climb down the elevator track to reach the elevator. It had malfunctioned right at the 250 foot level when the group was ready to come back down from their semi-lofty visit of one of the Power Plant Smokestacks. My only task was to climb up, fix the elevator and bring the group safely to the ground.

I grabbed some tools from my tool bucket that I thought would be useful. A couple of different size screwdrivers (one large one and one small), my multimeter, fuse pullers, and three wrenches, (7/16, 1/2 and 9/16 inch). I put them in a bag that looked like a feed bag for a horse. It had a rope with a hook on it.

A tool Bag, only ours had a hook on the top of the handle

A tool Bag, only ours had a hook on the top of the handle

I figured I didn’t want to take anything I didn’t need, so I didn’t put all 40 pounds of tools from my tool bucket into the bag. Just those things I thought I might need. I had my handy dandy little crescent wrench in my pocket and my baby screwdriver in my pocket protector on my tee shirt.

4 inch crescent wrench

4 inch crescent wrench

I took a safety belt off of the coat rack by the door in the electric shop and put it on. I figured I could hook the tool bag to one of the rings while I was climbing the ladder up the smokestack. With only the safety belt and the fairly lightweight tool bag, I headed out to the Unit 2 smokestack. Oh yeah. I was carrying one other nifty device as well.

when I arrived, Doug Link was standing at the bottom with some other people. Doug explained that George Bohn and some other engineers from the City (meaning Oklahoma City) were trying to come down, but the elevator wasn’t working. Luckily they had carried a two-way radio with them when they went up (which was a regular safety precaution since smoke signals would largely go unnoticed coming from a smokestack).

I understand from watching movies that when you climb onto the tracks in a subway in New York City or some other large town with a subway, that you are supposed to avoid the “Third Rail”. After Doug Link had explained to me the problem, the first thing I did was to grab the third rail on the ladder that ran up the smoke stack.

Doug Link

Doug Link

You see. Running right up the middle of the ladder is an extra rail. This is what keeps you alive while you climb a very high ladder. Think about it. If you were to try to climb a ladder 250 or 500 feet straight up, what’s going to happen to you? Your arms and legs are going to start getting wobbly. You are going to become short of breath, and your head is going to start to swim some either from hyperventilating or the lack of oxygen… I haven’t figured out which yet.

Anyway, at some point, something is going to stop working. Your fingers are going to miss their grip on the next rung or your work boot is going to slip off of the rung and you will fall. If there is nothing to stop you, then you are going all the way to the ground.

That is why the third rail is added to the ladder. It is there so that you can tie your safety belt to it. It keeps you from falling when you slip, and it also allows you to take a rest when you need it without the worry that if some part of your body momentarily malfunctions, you won’t fall to your death.

A ladder with a safety belt rail

A ladder with a safety belt rail

Here is an example of a ladder with a device similar to the one we had on our stack ladders. I took the nifty device I had brought with me and hooked it into the third rail of the ladder and clipped the tool bag to the other metal loop on my safety belt (this was before we had safety harnesses). Then I began my trek to the landing.

As I ascended (went up) the ladder I told myself that this was no higher than climbing the stairs on the boiler to go to the elevator penthouse to fix the boiler elevators. I do that all the time. This should not be so hard. Just as I would help myself climb the stairs, I could use my hands to pull myself up the ladder distributing the work between my arms and legs as needed so that when one set was becoming too tired, I would have the other set do more of the work (arms and legs I mean).

I told myself it would probably be best if I didn’t stop until I arrived at the 250 foot landing, because I thought that if I did stop for a rest, my legs would get all wobbly. As long as I kept climbing, they didn’t have time for that nonsense. So, I huffed and puffed, and kept focusing on each rung of the ladder as I climbed.

When I reached the 250 foot landing, I swung my tool bag over onto the grating and unclipped my belt from the third rail and sat down with my feet still dangling off the edge of the grating where the ladder came through and rested for a few moments.

George Bohn and the other castaways were around the other side of the stack. They had not realized I had arrived yet. After I caught my breath, I climbed up to the top of the elevator and opened the control panel to see why the elevator was not working. I switched it to manual, and tried to operate it from the top of the elevator, but it didn’t budge.

I used my multimeter to check the circuits and quickly found that one of the fuses had blown out. Unfortunately, I didn’t bring a spare fuse with me, and there wasn’t one in the control box, so there wasn’t much I could do to fix the elevator controls at this point.

I hollered for George and he came around the walkway to the elevator. I explained to him that the fuse to the controls was blown and that I could either climb all the way back down the ladder to the ground to get one, or, I could manually “drop” the elevator down with them in it to the ground. The lady with them didn’t care much for that idea.

I explained that I regularly drop test the elevator and I would be able to let the brake loose long enough for the elevator to go down a couple of feet at a time. After doing that about 125 times, we would be safely on the ground. That seemed to satisfy them, so they entered the elevator and closed the door, while I remained on the top of the elevator.

A typical Stack Elevator. Not the same brand as ours.

A typical Stack Elevator. Not the same brand as ours.

I took my large screwdriver out of the tool bag and pried it between the motor and a latch on the brake. This way, I just had to pull out on the screwdriver to release the brake on the elevator until it began to free-fall toward the ground. I turned my head to look up at the elevator track so I could make sure I didn’t let the elevator drop too far. If I did, then my heroic attempt to rescue my elevator hostages would quickly turn from an “atta-boy” into an “Uh-Oh!”

You see, if I let the elevator drop more than 3 feet (or so), then the safeties on the elevator (known as “dogs”) would set. This would bring the elevator to an abrupt halt. It was designed to stop a falling elevator by instantly locking the elevator to the tracks.

If the dogs were to be set on the stack elevator, the only way to release them is to take the cover off of a gear box and start manually cranking the elevator up about 3 feet until the dogs reset. This was a slow process that usually took about 30 minutes, and if I didn’t go up far enough to actually reset the dogs, as soon as we continued going back down, the dogs would set again and I would have to repeat the process.

So, like the tortoise, I decided that slow and steady wins the race. I was not going to drop the elevator more than a foot and a half each time. We would take our time going down.

The first time I released the brakes and the elevator began to free-fall, I heard the lady below me in the elevator let out a loud gasp. I know the guys were gasping as well, they just had to be more quiet about it. I know I was gasping each time on the top of the elevator and I had done this probably 20 times before when we did the elevator drop tests (See the post “After Effects of Power Plant Drop Tests“).

After about 10 minutes the elevator was safely back on the ground and so were the engineers. Doug Link came up to me and said with an excited voice, “It took you only 4 minutes and 23 seconds to climb up the ladder! That’s incredible! I timed you!” I said, “That’s about right. One second per foot.”

I went back to the shop and found three fuses for the one that had blown on the elevator. I climbed back on the elevator and opened the control box and replaced the bad one. Then I placed the other two in the control box. I figured this way, if this fuse were to blow again, then at least the electrician could just replace it, and not have to manually ride the elevator to the ground again.

I tested the elevator by riding it up and down the stack a few times and everything worked just fine. I figured that this must have just happened because George Bohn was trying to show off to some cute engineer. That’s just George’s luck. To find out more adventures with George, you can read this post: “Bohn’s Boner and the Power Plant Precipitator Computer“.

The Power Plant Smokestack Third Rail is the Lifesaver

Originally posted November 29, 2014:

It was quite a site at the coal-fired Power Plant in North Central Oklahoma to see a 400 pound man climbing up the ladder to the 250 foot level (halfway) of the smokestack only to climb halfway down again on the track the elevator used to go up and down the smokestack. I was on labor crew then and I remember thinking, I’m sure glad that’s not me.

A small tour of people from Oklahoma City had come to the plant and one of the engineers was showing them around. I think Allen Gould may remember who it was. I’m not saying it was Allen, I’m just thinking that he was around at that time.

Power Plant Engineer Allen Gould

Power Plant Engineer Allen Gould

I think that day the wind was blowing rather hard and when the elevator was descending (going down) the stack, the power cable somehow blew over into the path of the elevator and it was caught under the roller which brought the elevator to an abrupt halt. Unfortunately. in this instance, trying to free fall the elevator manually to bring it down wouldn’t work since when the brakes were released, the elevator would move because it was really stuck right where it was.

A person that worked for the Alimak elevator company was called in from Wichita Kansas 100 miles to the north of the Power plant, which meant that it took almost 2 hours for the person to arrive at the plant. When he did, he turned out to be the largest elevator repairman I had ever seen. He had to climb up 250 feet up a ladder to the landing, then back down again about 100 feet to the elevator to rescue the people from the elevator.

I first found out about it when someone pointed out the large figure of a man about halfway up to the first landing on the smokestack ladder. He had stopped for a rest and was leaning back on his lanyard that was attached to the ladder. When we arrived in the maintenance shop, Marlin McDaniel explained the situation to us. I think it took well over three hours for this man to take each person out of the hatch in the top of the elevator, then climb with them up the elevator track to the landing, and then take them down the ladder 250 feet to the ground. I think one of them was a lady, and two were men.

The stack elevator is a small box with a capacity to carry 3 people or a weight of 900 pounds. It is crowded enough with only two people in it, but three is always a crowd (as the saying goes, “Two’s company, Three’s a crowd”). That phrase definitely is true with the stack elevator.

 

These are the 500 foot smoke stacks

These are the 500 foot smoke stacks

At the time, I didn’t realize that one day I would be an electrician that took care of the smoke stack elevators. Actually, I never gave it a thought about what sort of equipment electricians repaired or maintained. It turned out that electricians worked on anything that had electric power going to it. That’s pretty much anything mechanical.

Electricians would work on the motors while the mechanics would work on the pumps, fans and valves attached to the end of the motors. When it came to the stack elevators, it was generally left up to the electricians to do the majority of the work. We inspected the elevators each month, and when they broke down, we were called to repair them.

When the boiler elevators broke down, it seemed as if I was the person of choice to ask to climb the boiler to the roof to fix it. The elevator controls were located on the top of the boiler, so I would usually end up climbing the stairs to the top cleaning door contacts on the way up. It happens that the boilers are 250 feet tall. So, the middle landing on the stack elevator is about the same height as the boiler as you can see in the picture above.

Bill Bennett, our A Foreman, would always add when he was telling me to go fix the elevator…. “You like climbing all those stairs anyway.” What could I say? “Sure Bill! I’ll go see what I can do.”

I think in the back of my mind I knew the day was coming when I was going to have to climb the stack elevator ladder to rescue someone. I had already climbed it a few times to fix some conduit that had come loose that ran up the smokestack next to the ladder, so I knew what it was like to go straight up a 500 foot ladder to the top of the smokestack. Luckily when my turn came around for a rescue, I only had to go halfway up. There were 4 people stuck on the smokestack.

Unlike the large elevator repairman from Wichita, I didn’t have to climb down the elevator track to reach the elevator. It had malfunctioned right at the 250 foot level when the group was ready to come back down from their semi-lofty visit of one of the Power Plant Smokestacks. My only task was to climb up, fix the elevator and bring the group safely to the ground.

I grabbed some tools from my tool bucket that I thought would be useful. A couple of different size screwdrivers (one large one and one small), my multimeter, fuse pullers, and three wrenches, (7/16, 1/2 and 9/16 inch). I put them in a bag that looked like a feed bag for a horse. It had a rope with a hook on it.

A tool Bag, only ours had a hook on the top of the handle

A tool Bag, only ours had a hook on the top of the handle

I figured I didn’t want to take anything I didn’t need, so I didn’t put all 40 pounds of tools from my tool bucket into the bag. Just those things I thought I might need. I had my handy dandy little crescent wrench in my pocket and my baby screwdriver in my pocket protector on my tee shirt.

4 inch crescent wrench

4 inch crescent wrench

I took a safety belt off of the coat rack by the door in the electric shop and put it on. I figured I could hook the tool bag to one of the rings while I was climbing the ladder up the smokestack. With only the safety belt and the fairly lightweight tool bag, I headed out to the Unit 2 smokestack. Oh yeah. I was carrying one other nifty device as well.

when I arrived, Doug Link was standing at the bottom with some other people. Doug explained that George Bohn and some other engineers from the City (meaning Oklahoma City) were trying to come down, but the elevator wasn’t working. Luckily they had carried a two-way radio with them when they went up (which was a regular safety precaution since smoke signals would largely go unnoticed coming from a smokestack).

I understand from watching movies that when you climb onto the tracks in a subway in New York City or some other large town with a subway, that you are supposed to avoid the “Third Rail”. After Doug Link had explained to me the problem, the first thing I did was to grab the third rail on the ladder that ran up the smoke stack.

Doug Link

Doug Link

You see. Running right up the middle of the ladder is an extra rail. This is what keeps you alive while you climb a very high ladder. Think about it. If you were to try to climb a ladder 250 or 500 feet straight up, what’s going to happen to you? Your arms and legs are going to start getting wobbly. You are going to become short of breath, and your head is going to start to swim some either from hyperventilating or the lack of oxygen… I haven’t figured out which yet.

Anyway, at some point, something is going to stop working. Your fingers are going to miss their grip on the next rung or your work boot is going to slip off of the rung and you will fall. If there is nothing to stop you, then you are going all the way to the ground.

That is why the third rail is added to the ladder. It is there so that you can tie your safety belt to it. It keeps you from falling when you slip, and it also allows you to take a rest when you need it without the worry that if some part of your body momentarily malfunctions, you won’t fall to your death.

A ladder with a safety belt rail

A ladder with a safety belt rail

Here is an example of a ladder with a device similar to the one we had on our stack ladders. I took the nifty device I had brought with me and hooked it into the third rail of the ladder and clipped the tool bag to the other metal loop on my safety belt (this was before we had safety harnesses). Then I began my trek to the landing.

As I ascended (went up) the ladder I told myself that this was no higher than climbing the stairs on the boiler to go to the elevator penthouse to fix the boiler elevators. I do that all the time. This should not be so hard. Just as I would help myself climb the stairs, I could use my hands to pull myself up the ladder distributing the work between my arms and legs as needed so that when one set was becoming too tired, I would have the other set do more of the work (arms and legs I mean).

I told myself it would probably be best if I didn’t stop until I arrived at the 250 foot landing, because I thought that if I did stop for a rest, my legs would get all wobbly. As long as I kept climbing, they didn’t have time for that nonsense. So, I huffed and puffed, and kept focusing on each rung of the ladder as I climbed.

When I reached the 250 foot landing, I swung my tool bag over onto the grating and unclipped my belt from the third rail and sat down with my feet still dangling off the edge of the grating where the ladder came through and rested for a few moments.

George Bohn and the other castaways were around the other side of the stack. They had not realized I had arrived yet. After I caught my breath, I climbed up to the top of the elevator and opened the control panel to see why the elevator was not working. I switched it to manual, and tried to operate it from the top of the elevator, but it didn’t budge.

I used my multimeter to check the circuits and quickly found that one of the fuses had blown out. Unfortunately, I didn’t bring a spare fuse with me, and there wasn’t one in the control box, so there wasn’t much I could do to fix the elevator controls at this point.

I hollered for George and he came around the walkway to the elevator. I explained to him that the fuse to the controls was blown and that I could either climb all the way back down the ladder to the ground to get one, or, I could manually “drop” the elevator down with them in it to the ground. The lady with them didn’t care much for that idea.

I explained that I regularly drop test the elevator and I would be able to let the brake loose long enough for the elevator to go down a couple of feet at a time. After doing that about 125 times, we would be safely on the ground. That seemed to satisfy them, so they entered the elevator and closed the door, while I remained on the top of the elevator.

A typical Stack Elevator. Not the same brand as ours.

A typical Stack Elevator. Not the same brand as ours.

I took my large screwdriver out of the tool bag and pried it between the motor and a latch on the brake. This way, I just had to pull out on the screwdriver to release the brake on the elevator until it began to free-fall toward the ground. I turned my head to look up at the elevator track so I could make sure I didn’t let the elevator drop too far. If I did, then my heroic attempt to rescue my elevator hostages would quickly turn from an “atta-boy” into an “Uh-Oh!”

You see, if I let the elevator drop more than 3 feet (or so), then the safeties on the elevator (known as “dogs”) would set. This would bring the elevator to an abrupt halt. It was designed to stop a falling elevator by instantly locking the elevator to the tracks.

If the dogs were to be set on the stack elevator, the only way to release them is to take the cover off of a gear box and start manually cranking the elevator up about 3 feet until the dogs reset. This was a slow process that usually took about 30 minutes, and if I didn’t go up far enough to actually reset the dogs, as soon as we continued going back down, the dogs would set again and I would have to repeat the process.

So, like the tortoise, I decided that slow and steady wins the race. I was not going to drop the elevator more than a foot and a half each time. We would take our time going down.

The first time I released the brakes and the elevator began to free-fall, I heard the lady below me in the elevator let out a loud gasp. I know the guys were gasping as well, they just had to be more quiet about it. I know I was gasping each time on the top of the elevator and I had done this probably 20 times before when we did the elevator drop tests (See the post “After Effects of Power Plant Drop Tests“).

After about 10 minutes the elevator was safely back on the ground and so were the engineers. Doug Link came up to me and said with an excited voice, “It took you only 4 minutes and 23 seconds to climb up the ladder! That’s incredible! I timed you!” I said, “That’s about right. One second per foot.”

I went back to the shop and found three fuses for the one that had blown on the elevator. I climbed back on the elevator and opened the control box and replaced the bad one. Then I placed the other two in the control box. I figured this way, if this fuse were to blow again, then at least the electrician could just replace it, and not have to manually ride the elevator to the ground again.

I tested the elevator by riding it up and down the stack a few times and everything worked just fine. I figured that this must have just happened because George Bohn was trying to show off to some cute engineer. That’s just George’s luck. To find out more adventures with George, you can read this post: “Bohn’s Boner and the Power Plant Precipitator Computer“.

A Chance for Power Plant Men to Show Their Quality

Originally posted June 21, 2014.  I updated dates and added some new things.

I don’t know if anyone of us knew what to expect  Wednesday morning January 13 , 1993 when we were told to go to a meeting in the break room that was going to take all day.  We were supposed to be in some kind of training.  Everyone at the plant was going to have to go through whatever training we were having.  Training like this always seemed funny to me for some reason.  I think it was because the hodgepodge of welders, mechanics, machinists, electricians and Instrument and Controls guys seemed so out of place in their coal-stained worn out old jeans and tee shirts.

I remember walking into the break room and sitting down across the table from Paul Mullon.  He was a new chemist at the time.  He had just started work that day.  We became friends right away.  Scott Hubbard, Paul and I were carpooling buddies.  He always looked a lot younger than he really was:

Paul Mullon when he was 90 years old

My favorite picture of Paul Mullon when he was 90 years old

See how much younger he looks?  — Oh.  That’s what I would always say about Gene Day because he was always as old as dirt.  Even when he was young.  Paul is only four years older than I am, but he still looks like he’s a lot younger than 70.  Even his great great grand daughter is saluting him in this photo.  Actually.  I love Paul Mullon as if he was my own brother.  He still looks younger than my younger brother who is four years younger than I am.  People used to think that he was his own daughter’s boyfriend.

When our training began, the plant manager at the coal-fired power plant in North Central Oklahoma, Ron Kilman came in and told us that we were going to learn about the “Quality Process”.  He explained that the Quality Process was a “Process”, not a “Program” like the “We’ve Got The Power Program” we had a few years earlier.  This meant that it wasn’t a one time thing that would be over any time soon.  The Quality Process was something that we will be able to use the rest of our lives.

At this point they handed out a blue binder to each of us.  The title on the front said, “QuickStart – Foundations of Team Development”.  A person from a company called “The Praxis Group”, Rick Olson from Utah (when I originally posted this last year, I couldn’t remember his name.  Then I found my Quality book and it had Rick’s name in it).  I had looked Rick Olson up to see if he was a member of CompuServe and there was Rick Olson from Ogden, Utah.  When I asked him if he was from Ogden, he told me he was from Provo, Utah.

One of the first things Rick asked us to do was to break up into teams of four or five and we were asked to come up with 3 facts about ourselves.  Two of which were true and one that was false.  Then our team mates were asked to vote on which fact they thought was the false one.  The only one I remember from that game was that Ben Brandt had dinner with the Bill Clinton on one occasion when he was Governor of Arkansas.  — At least, I think that was what it was…  Maybe that was the fact that was false.

The purpose of this game was to get to know each other….  Well….  We had all been working with each other for the past 15 years, so we all knew each other pretty good by that time.  Except for someone new like Paul.  I think my false fact was that I had hitchhiked from Columbia, Missouri to New Orleans when I was in college.  — That was an easy one.  Everyone knew that I had hitchhiked to Holly Springs National Forest in Mississippi, not New Orleans.

Anyway, after we knew each other better, we learned about the different roles that members of our teams would have.  Our “Quality” teams were going to be our own crews.  Each team was going to have a Leader, a Facilitator, a Recorder, and if needed (though we never really needed one), a Logistics person.  The Logistics person was just someone that found a place where the team could meet.  We always just met in the Electric Shop office.  I wanted to be “Facilitator”.

We learned about the importance of creating Ground Rules for our Quality Meetings.  One of the Ground rules we had was to be courteous to each other.  Another was to “Be willing to change” (I didn’t think this really belonged as a “Ground Rule”.  I thought of it more as a “Nice to have” given the present company).  Another Ground Rule was to “Discuss – Don’t Lecture”.  One that I thought was pretty important was about “Confidentiality”.  We had a ground rule that essentially said, “What happens in a team meeting… Stays in the team meeting.”

I recently found a list of the Quality teams that were formed at our plant.  Here is a list of the more interesting names and which team it was:  Barrier Reliefs (that was our team — Andy Tubbs team).  Rolaids (Ted Holdges team).  Elmore and the Problem Solvers (Stanley Elmore’s team… of course).  Spit and Whittle (Gerald Ferguson’s Team).  Foster’s Mission (Charles Foster’s team).  Sooner Elite (Engineer’s team).  Boiler Pukes (Cleve’s Smith’s Welding crew I believe).  Quality Trek (Alan Kramer’s Team).  Designing Women (Linda Dallas’s Team).  There were many more.

I think all the Power Plant Quality Teams had the same “Mission Statement”.  It was “To Meet or Exceed our Customer’s Expectations”.  I remember that the person that was teaching all this stuff to us was really good at motivating us to be successful.  As we stepped through the “QuickStart” training manual, the Power Plant He-men were beginning to see the benefit of the tools we were learning.  There were those that would have nothing to do with anything called “Quality”, just because… well…. it was a matter of principle to be against things that was not their own idea.

Later they gave us a the main Quality binder that we used for our team meetings:

Our Quality Manual

Our Quality Manual

When we began learning about the different quality tools that we could use to solve problems, I recognized them right away.  I hadn’t learned any “Quality Process” like Six Sigma at that time, but I was about to graduate from Loyola University in New Orleans in a couple of months with a Masters of Religious Education (MRE) where I had focused my courses on Adult Education.  Half of my classes were about Religious topics, and the other half was about how to teach adults.  The same methods  were used that we learned about in this training.

It just happened that I had spent the previous three years learning the same various quality tools that the Power Plant Men were being taught.  We were learning how to identify barriers to helping our customers and breaking them down one step at at time.  We also learned how to prioritize our efforts to break down the barriers by looking at where we had control and who we were trying to serve… such as ourselves or others.  I remember we tried to stay away from things that were “Self Serving.”

We learned how to do something called a “Barrier Walk”.  This was where we would walk around the plant almost as if we were looking at it for the first time to find barriers we hadn’t noticed before.  We also learned how to brainstorm ideas by just saying whatever came to our minds no matter how silly they may sound without anyone putting anyone down for a dumb idea.  Rick called each barrier that your customer encountered a “SPLAT”.  Our goal was to reduce “SPLAT”s.  I think at one point we even discussed having stickers that said “SPLAT” on them that we could put on barriers when we located them.

When we implemented a quality idea, we were taught to do a “Things Gone Right, Things Gone Wrong” exercise so that we could improve future projects.  This had two columns.  On one side you listed all the good things (which was generally fairly long), and on the other, all the things that went wrong (which was a much shorter list).  This was done so that we could consider how to avoid the things that didn’t work well.

We learned how to make proposals and turn them into a team called “The Action Team”.  I was on this team as the Facilitator for the first 6 months.  Sue Schritter started out as our Action Team Leader.  The other Action team members in the beginning were:  Richard Allen, John Brien, Jim Cave, Robert Grover, Phil Harden, Alan Hetherington, Louise Kalicki, Bruce Klein, Johnnie Keys, Kerry Lewallen, Ron Luckey and George Pepple.

The Power Plant Men learned that there were five S’s that would cause a proposal to fail.

One of those was “Secrecy”.  If you are going to propose something that affects others, then you have to include them in the decision making up front or else even if you think it’s a great idea, others may have legitimate reasons for not implementing it, and you would have wasted your time.

The second was “Simplicity”.  It follows along with Secrecy in that if you just threw the idea together without considering all the others that will be affected by the change, then the proposal would be sent back to you for further study.

The third was “Subjectivity”.  This happens when something just sounds like a good idea.  All the facts aren’t considered.  The solutions you may be proposing may not be the best, or may not even really deal with the root of a problem.  You might even be trying to solve a problem that doesn’t really exist, or is such a small problem that it isn’t worth the effort.

The fourth was “Superficiality”.  This happens when the outcomes from the proposal are not carefully considered.  Things like, what are the long term effects.  Or, What is the best and worst case of this proposal…  Those kind of things are not considered.

The last one is “Self-Serving”.  If you are doing this just because it benefits only your own team and no one else, then you aren’t really doing much to help your customers.  Most likely it may even be causing others an inconvenience for your own benefit.

I know this is becoming boring as I list the different things we learned that week in 1993.  Sorry about that.  I will cut it short by not talking about the “Empowerment Tool” that we learned about, or even the importance of Control Charts and go right to the best tool of them all.  One that Power Plant Men all over can relate to.  It is called the “Fishbone Diagram”.

Fishbone Diagram

Fishbone Diagram

There are few things that Power Plant Men like better than Fishing, so when we began to learn about the Fishbone diagram I could see that even some of the most stubborn skeptics couldn’t bring themselves to say something bad about the Fishbone diagram.  Some were even so enthusiastic that they were over-inflating the importance (and size) of their Fishbone diagrams!  — This along with the Cause and Effect chart were very useful tools in finding the root cause of a problem (or “barrier” as we referred to them).

All in all, this was terrific training.  A lot of good things were done as a result to make things more efficient at the plant because of it.  For the next year, the culture at the plant was being molded into a quality oriented team.  This worked well at our particular plant because the Power Plant Men employed there already took great pride in their work.  So, the majority of the crews fell behind the effort.  I know of only one team at the coal yard where the entire team decided to have nothing to do with it.

When training was done, I told Rick that I thought that his company would really benefit by having a presence on the Internet.  As I mentioned in last week’s post “Turning the Tables on a Power Plant Interloper”  During this time the World Wide Web did not have browsers and modems did not have the bandwidth at this point, so CompuServe was the only service available for accessing the Internet for the regular population.

I asked Rick if he had heard about CompuServe.  He said he had not heard of it.  I told him that I thought the Internet was going to be the place where training would be available for everyone eventually and he would really benefit by starting a “Quality” Forum on CompuServe, because there wasn’t anything like that on the Internet at the time.  I remember the puzzled look he gave me as he was leaving.  I realized he didn’t have a clue what I was talking about.  Few people knew about the Internet in those days….

I have a number of stories about how the Quality Process thrived at the Power Plant over the next year that I will share.  I promise those stories will not be as boring as this one.

The Power Plant Smokestack Third Rail is the Lifesaver

It was quite a site at the coal-fired Power Plant in North Central Oklahoma to see a 400 pound man climbing up the ladder to the 250 foot level (halfway) of the smokestack only to climb halfway down again on the track the elevator used to go up and down the smokestack.  I was on labor crew then and I remember thinking, I’m sure glad that’s not me.

A small tour of people from Oklahoma City had come to the plant and one of the engineers was showing them around.  I think Allen Gould may remember who it was.  I’m not saying it was Allen, I’m just thinking that he was around at that time.

Power Plant Engineer Allen Gould

Power Plant Engineer Allen Gould

I think that day the wind was blowing rather hard and when the elevator was descending (going down) the stack, the power cable somehow blew over into the path of the elevator and it was caught under the roller which brought the elevator to an abrupt halt.  Unfortunately.  in this instance, trying to free fall the elevator manually to bring it down wouldn’t work since when the brakes were released, the elevator would move because it was really stuck right where it was.

A person that worked for the Alimak elevator company was called in from Wichita Kansas 100 miles to the north of the Power plant, which meant that it took almost 2 hours for the person to arrive at the plant.  When he did, he turned out to be the largest elevator repairman I had ever seen.  He had to climb up 250 feet up a ladder to the landing, then back down again about 100 feet to the elevator to rescue the people from the elevator.

I first found out about it when someone pointed out the large figure of a man about halfway up to the first landing on the smokestack ladder.  He had stopped for a rest and was leaning back on his lanyard that was attached to the ladder.  When we arrived in the maintenance shop, Marlin McDaniel explained the situation to us.  I think it took well over three hours for this man to take each person out of the hatch in the top of the elevator, then climb with them up the elevator track to the landing, and then take them down the ladder 250 feet to the ground.  I think one of them was a lady, and two were men.

The stack elevator is a small box with a capacity to carry 3 people or a weight of 900 pounds. It is crowded enough with only two people in it, but three is always a crowd (as the saying goes, “Two’s company, Three’s a crowd”).  That phrase definitely is true with the stack elevator.

 

These are the 500 foot smoke stacks

These are the 500 foot smoke stacks

At the time, I didn’t realize that one day I would be an electrician that took care of the smoke stack elevators.  Actually, I never gave it a thought about what sort of equipment electricians repaired or maintained.  It turned out that electricians worked on anything that had electric power going to it.  That’s pretty much anything mechanical.

Electricians would work on the motors while the mechanics would work on the pumps, fans and valves attached to the end of the motors.  When it came to the stack elevators, it was generally left up to the electricians to do the majority of the work.  We inspected the elevators each month, and when they broke down, we were called to repair them.

When the boiler elevators broke down, it seemed as if I was the person of choice to ask to climb the boiler to the roof to fix it.  The elevator controls were located on the top of the boiler, so I would usually end up climbing the stairs to the top cleaning door contacts on the way up.  It happens that the boilers are 250 feet tall.  So, the middle landing on the stack elevator is about the same height as the boiler as you can see in the picture above.

Bill Bennett, our A Foreman, would always add when he was telling me to go fix the elevator…. “You like climbing all those stairs anyway.”  What could I say?  “Sure Bill!  I’ll go see what I can do.”

I think in the back of my mind I knew the day was coming when I was going to have to climb the stack elevator ladder to rescue someone.  I had already climbed it a few times to fix some conduit that had come loose that ran up the smokestack next to the ladder, so I knew what it was like to go straight up a 500 foot ladder to the top of the smokestack.  Luckily when my turn came around for a rescue, I only had to go halfway up.  There were 4 people stuck on the smokestack.

Unlike the large elevator repairman from Wichita, I didn’t have to climb down the elevator track to reach the elevator.  It had malfunctioned right at the 250 foot level when the group was ready to come back down from their semi-lofty visit of one of the Power Plant Smokestacks.  My only task was to climb up, fix the elevator and bring the group safely to the ground.

I grabbed some tools from my tool bucket that I thought would be useful.  A couple of different size screwdrivers (one large one and one small), my multimeter, fuse pullers, and three wrenches, (7/16, 1/2 and 9/16 inch).  I put them in a bag that looked like a feed bag for a horse.  It had a rope with a hook on it.

A tool Bag, only ours had a hook on the top of the handle

A tool Bag, only ours had a hook on the top of the handle

I figured I didn’t want to take anything I didn’t need, so I didn’t put all 40 pounds of tools from my tool bucket into the bag.  Just those things I thought I might need.  I had my handy dandy little crescent wrench in my pocket and my baby screwdriver in my pocket protector on my tee shirt.

4 inch crescent wrench

4 inch crescent wrench

I took a safety belt off of the coat rack by the door in the electric shop and put it on.  I figured I could hook the tool bag to one of the rings while I was climbing the ladder up the smokestack.  With only the safety belt and the fairly lightweight tool bag, I headed out to the Unit 2 smokestack.  Oh yeah.  I was carrying one other nifty device as well.

when I arrived, Doug Link was standing at the bottom with some other people.  Doug explained that George Bohn and some other engineers from the City (meaning Oklahoma City) were trying to come down, but the elevator wasn’t working.  Luckily they had carried a two-way radio with them when they went up (which was a regular safety precaution since smoke signals would largely go unnoticed coming from a smokestack).

I understand from watching movies that when you climb onto the tracks in a subway in New York City or some other large town with a subway, that you are supposed to avoid the “Third Rail”.  After Doug Link had explained to me the problem, the first thing I did was to grab the third rail on the ladder that ran up the smoke stack.

Doug Link

Doug Link

You see.  Running right up the middle of the ladder is an extra rail.  This is what keeps you alive while you climb a very high ladder.  Think about it.  If you were to try to climb a ladder 250 or 500 feet straight up, what’s going to happen to you?  Your arms and legs are going to start getting wobbly.  You are going to become short of breath, and your head is going to start to swim some either from hyperventilating or the lack of oxygen… I haven’t figured out which yet.

Anyway, at some point, something is going to stop working.  Your fingers are going to miss their grip on the next rung or your work boot is going to slip off of the rung and you will fall.  If there is nothing to stop you, then you are going all the way to the ground.

That is why the third rail is added to the ladder.  It is there so that you can tie your safety belt to it.  It keeps you from falling when you slip, and it also allows you to take a rest when you need it without the worry that if some part of your body momentarily malfunctions, you won’t fall to your death.

A ladder with a safety belt rail

A ladder with a safety belt rail

Here is an example of a ladder with a device similar to the one we had on our stack ladders.  I took the nifty device I had brought with me and hooked it into the third rail of the ladder and clipped the tool bag to the other metal loop on my safety belt (this was before we had safety harnesses).  Then I began my trek to the landing.

As I ascended (went up) the ladder I told myself that this was no higher than climbing the stairs on the boiler to go to the elevator penthouse to fix the boiler elevators.  I do that all the time.  This should not be so hard.  Just as I would help myself climb the stairs, I could use my hands to pull myself up the ladder distributing the work between my arms and legs as needed so that when one set was becoming too tired, I would have the other set do more of the work (arms and legs I mean).

I told myself it would probably be best if I didn’t stop until I arrived at the 250 foot landing, because I thought that if I did stop for a rest, my legs would get all wobbly.  As long as I kept climbing, they didn’t have time for that nonsense.  So, I huffed and puffed, and kept focusing on each rung of the ladder as I climbed.

When I reached the 250 foot landing, I sung my tool bag over onto the grating and unclipped my belt from the third rail and sat down with my feet still dangling off the edge of the grating where the ladder came through and rested for a few moments.

George Bohn and the other castaways were around the other side of the stack.  They had not realized I had arrived yet.  After I caught my breath, I climbed up to the top of the elevator and opened the control panel to see why the elevator was not working.  I switched it to manual, and tried to operate it from the top of the elevator, but it didn’t budge.

I used my multimeter to check the circuits and quickly found that one of the fuses had blown out.  Unfortunately, I didn’t bring a spare fuse with me, and there wasn’t one in the control box, so there wasn’t much I could do to fix the elevator controls at this point.

I hollered for George and he came around the walkway to the elevator.  I explained to him that the fuse to the controls was blown and that I could either climb all the way back down the ladder to the ground to get one, or, I could manually “drop” the elevator down with them in it to the ground.  The lady with them didn’t care much for that idea.

I explained that I regularly drop test the elevator and I would be able to let the brake loose long enough for the elevator to go down a couple of feet at a time.  After doing that about 125 times, we would be safely on the ground.  That seemed to satisfy them, so they entered the elevator and closed the door, while I remained on the top of the elevator.

A typical Stack Elevator.  Not the same brand as ours.

A typical Stack Elevator. Not the same brand as ours.

I took my large screwdriver out of the tool bag and pried it between the motor and a latch on the brake.  This way, I just had to pull out on the screwdriver to release the brake on the elevator until it began to free-fall toward the ground.  I turned my head to look up at the elevator track so I could make sure I didn’t let the elevator drop too far.  If I did, then my heroic attempt to rescue my elevator hostages would quickly turn from an “atta-boy” into an “Uh-Oh!”

You see, if I let the elevator drop more than 3 feet (or so), then the safeties on the elevator (known as “dogs”) would set.  This would bring the elevator to an abrupt halt.  It was designed to stop a falling elevator by instantly locking the elevator to the tracks.

If the dogs were to be set on the stack elevator, the only way to release them is to take the cover off of a gear box and start manually cranking the elevator up about 3 feet until the dogs reset.  This was a slow process that usually took about 30 minutes, and if I didn’t go up far enough to actually reset the dogs, as soon as we continued going back down, the dogs would set again and I would have to repeat the process.

So, like the tortoise, I decided that slow and steady wins the race.  I was not going to drop the elevator more than a foot and a half each time.  We would take our time going down.

The first time I released the brakes and the elevator began to free-fall, I heard the lady below me in the elevator let out a loud gasp.  I know the guys were gasping as well, they just had to be more quiet about it.  I know I was gasping each time on the top of the elevator and I had done this probably 20 times before when we did the elevator drop tests  (See the post “After Effects of Power Plant Drop Tests“).

After about 10 minutes the elevator was safely back on the ground and so were the engineers.  Doug Link came up to me and said with an excited voice, “It took you only 4 minutes and 23 seconds to climb up the ladder!  That’s incredible!  I timed you!”  I said,  “That’s about right.  One second per foot.”

I went back to the shop and found three fuses for the one that had blown on the elevator.  I climbed back on the elevator and opened the control box and replaced the bad one.  Then I placed the other two in the control box.  I figured this way, if this fuse were to blow again, then at least the electrician could just replace it, and not have to manually ride the elevator to the ground again.

I tested the elevator by riding it up and down the stack a few times and everything worked just fine.  I figured that this must have just happened because George Bohn was trying to show off to some cute engineer.  That’s just George’s luck.  To find out more adventures with George, you can read this post:  “Bohn’s Boner and the Power Plant Precipitator Computer“.

A Chance for Power Plant Men to Show Their Quality

I don’t know if anyone of us knew what to expect  Tuesday morning June 1, 1993 when we were told to go to a meeting in the break room that was going to take all day.  We had just been off the previous day for Memorial Day.  We were supposed to be in some kind of training.  Everyone at the plant was going to have to go through whatever training we were having.  Training like this always seemed funny to me for some reason.  I think it was because the hodgepodge of welders, mechanics, machinists, electricians and Instrument and Controls guys seemed so out of place in their coal-stained worn out old jeans and tee shirts.

I remember walking into the break room and sitting down across the table from Paul Mullon.  He was a new chemist at the time.  He had started about 5 months earlier and we had become friends right away.  Scott Hubbard, Paul and I were carpooling buddies.  He always looked a lot younger than he really was:

Paul Mullon when he was 90 years old

My favorite picture of Paul Mullon when he was 90 years old

See how much younger he looks?  — Oh.  That’s what I would always say about Gene Day because he was always as old as dirt.  Even when he was young.  Paul is only four years older than I am, but he still looks like he’s a lot younger than 70.  Even his great great grand daughter is saluting him in this photo.  Actually.  I love Paul Mullon as if he was my own brother.  He still looks younger than my younger brother who is four years younger than I am.  People used to think that he was his own daughter’s boyfriend.

When our training began, the plant manager at the coal-fired power plant in North Central Oklahoma, Ron Kilman came in and told us that we were going to learn about the “Quality Process”.  He explained that the Quality Process was a “Process”, not a “Program” like the “We’ve Got The Power Program” we had a few years earlier.  This meant that it wasn’t a one time thing that would be over any time soon.  The Quality Process was something that we will be able to use the rest of our lives.

At this point they handed out a blue binder to each of us.  The title on the front said, “QuickStart – Foundations of Team Development”.  A person from a company called “The Praxis Group” (I think his name was Chris.  — I don’t remember for sure, but just for this post I’ll call him Chris).  Now, whenever I think about this guy, I think that his name was Chris Ogden, though, I know that wasn’t his name.  The reason I think about his last name being Ogden was because he was from Utah and either he was from Ogden, Utah, or someone else with his same name that was a member of CompuServe was from Ogden, Utah and he was from Provo, Utah.  — Strange how that happens.  (Maybe Ron Kilman who often reads these posts can remember his name will leave a comment below).  — At least I remembered Paul’s name…  He was my friend after all.  But you know how it is when you get older…

One of the first things Chris asked us to do was to break up into teams of four or five and we were asked to come up with 3 facts about ourselves.  Two of which were true and one that was false.  Then our team mates were asked to vote on which fact they thought was the false one.  The only one I remember from that game was that Ben Brandt had dinner with the Bill Clinton on one occasion when he was Governor of Arkansas.  — At least, I think that was what it was…  Maybe that was the fact that was false.

The purpose of this game was to get to know each other….  Well….  We had all been working with each other for the past 15 years, so we all knew each other pretty good by that time.  Except for someone new like Paul.  I think my false fact was that I had hitchhiked from Columbia, Missouri to New Orleans when I was in college.  — That was an easy one.  Everyone knew that I had hitchhiked to Holly Springs National Forest in Mississippi, not New Orleans.

Anyway, after we knew each other better, we learned about the different roles that members of our teams would have.  Our “Quality” teams were going to be our own crews.  Each team was going to have a Leader, a Facilitator, a Recorder, and if needed (though we never really needed one), a Logistics person.  The Logistics person was just someone that found a place where the team could meet.  We always just met in the Electric Shop office.  I wanted to be “Facilitator”.

We learned about the importance of creating Ground Rules for our Quality Meetings.  One of the Ground rules we had was to be courteous to each other.  Another was to “Be willing to change” (I didn’t think this really belonged as a “Ground Rule”.  I thought of it more as a “Nice to have” given the present company).  Another Ground Rule was to “Discuss – Don’t Lecture”.  One that I thought was pretty important was about “Confidentiality”.  We had a ground rule that essentially said, “What happens in a team meeting… Stays in the team meeting.”

I think all the Power Plant Quality Teams had the same “Mission Statement”.  It was “To Meet or Exceed our Customer’s Expectations”.  I remember that the person that was teaching all this stuff to us was really good at motivating us to be successful.  As we stepped through the “QuickStart” training manual, the Power Plant He-men were beginning to see the benefit of the tools we were learning.  There were those that would have nothing to do with anything called “Quality”, just because… well…. it was a matter of principle to be against things that was not their own idea.

When we began learning about the different quality tools that we could use to solve problems, I recognized them right away.  I hadn’t learned any “Quality Process” like Six Sigma at that time, but I had just graduated from Loyola University in New Orleans less than a month earlier with a Masters of Religious Education (MRE) where I had focused my courses on Adult Education.  Half of my classes were about Religious topics, and the other half was about how to teach adults.  The same methods  were used that we learned about in this training.

It just happened that I had spent the previous three years learning the same various quality tools that the Power Plant Men were being taught.  We were learning how to identify barriers to helping our customers and breaking them down one step at at time.  We also learned how to prioritize our efforts to break down the barriers by looking at where we had control and who we were trying to serve… such as ourselves or others.  I remember we tried to stay away from things that were “Self Serving.”

We learned how to do something called a “Barrier Walk”.  This was where we would walk around the plant almost as if we were looking at it for the first time to find barriers we hadn’t noticed before.  We also learned how to brainstorm ideas by just saying whatever came to our minds no matter how silly they may sound without anyone putting anyone down for a dumb idea.  Chris called each barrier that your customer encountered a “SPLAT”.  Our goal was to reduce “SPLAT”s.  I think at one point we even discussed having stickers that said “SPLAT” on them that we could put on barriers when we located them.

When we implemented a quality idea, we were taught to do a “Things Gone Right, Things Gone Wrong” exercise so that we could improve future projects.  This had two columns.  On one side you listed all the good things (which was generally fairly long), and on the other, all the things that went wrong (which was a much shorter list).  This was done so that we could consider how to avoid the things that didn’t work well.

We learned how to make proposals and turn them into a team called “The Action Team”.  I was on this team as the Facilitator for the first 6 months.  Sue Schritter started out as our Action Team Leader.

The Power Plant Men learned that there were five S’s that would cause a proposal to fail.

One of those was “Secrecy”.  If you are going to propose something that affects others, then you have to include them in the decision making up front or else even if you think it’s a great idea, others may have legitimate reasons for not implementing it, and you would have wasted your time.

The second was “Simplicity”.  It follows along with Secrecy in that if you just threw the idea together without considering all the others that will be affected by the change, then the proposal would be sent back to you for further study.

The third was “Subjectivity”.  This happens when something just sounds like a good idea.  All the facts aren’t considered.  The solutions you may be proposing may not be the best, or may not even really deal with the root of a problem.  You might even be trying to solve a problem that doesn’t really exist, or is such a small problem that it isn’t worth the effort.

The fourth was “Superficiality”.  This happens when the outcomes from the proposal are not carefully considered.  Things like, what are the long term effects.  Or, What is the best and worst case of this proposal…  Those kind of things are not considered.

The last one is “Self-Serving”.  If you are doing this just because it benefits only your own team and no one else, then you aren’t really doing much to help your customers.  Most likely it may even be causing others an inconvenience for your own benefit.

I know this is becoming boring as I list the different things we learned that week in 1993.  Sorry about that.  I will cut it short by not talking about the “Empowerment Tool” that we learned about, or even the importance of Control Charts and go right to the best tool of them all.  One that Power Plant Men all over can relate to.  It is called the “Fishbone Diagram”.

Fishbone Diagram

Fishbone Diagram

There are few things that Power Plant Men like better than Fishing, so when we began to learn about the Fishbone diagram I could see that even some of the most stubborn skeptics couldn’t bring themselves to say something bad about the Fishbone diagram.  Some were even so enthusiastic that they were over-inflating the importance (and size) of their Fishbone diagrams!  — This along with the Cause and Effect chart were very useful tools in finding the root cause of a problem (or “barrier” as we referred to them).

All in all, this was terrific training.  A lot of good things were done as a result to make things more efficient at the plant because of it.  For the next year, the culture at the plant was being molded into a quality oriented team.  This worked well at our particular plant because the Power Plant Men employed there already took great pride in their work.  So, the majority of the crews fell behind the effort.  I know of only one team at the coal yard where the entire team decided to have nothing to do with it.

When training was done, I told Chris (or was it Craig Brown…), that I thought that his company would really benefit by having a presence on the Internet.  As I mentioned in last week’s post “Turning the Tables on a Power Plant Interloper”  During this time the World Wide Web did not have browsers and modems did not have the bandwidth at this point, so CompuServe was the only service available for accessing the Internet for the regular population.

I asked Chris if he had heard about CompuServe.  He said he had not heard of it.  I told him that I thought the Internet was going to be the place where training would be available for everyone eventually and he would really benefit by starting a “Quality” Forum on CompuServe, because there wasn’t anything like that on the Internet at the time.  I remember the puzzled look he gave me as he was leaving.  I realized he didn’t have a clue what I was talking about.  Few people knew about the Internet in those days….

I have a number of stories about how the Quality Process thrived at the Power Plant over the next year that I will share.  I promise those stories will not be as boring as this one.