Tag Archives: Train

Lifecycle of a Power Plant Lump of Coal

Originally posted August 16, 2013:

Fifty Percent of our electricity is derived from coal. Did you ever wonder what has to take place for that to happen? I thought I would walk through the lifecycle of a piece of coal to give you an idea. I will not start back when the it was still a tree in a prehistoric world where dinosaurs grew long necks to reach the branches. I will begin when the large scoop shovel digs it out of the ground and loads it onto a coal truck.

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal for the power plant in North Central Oklahoma came from Wyoming. There were trains from the Black Thunder Mine and the Powder River Basin.

Coal Trains on their way to power plants

Coal Trains on their way to power plants

It’s a long ride for the lump of coal sitting in the coal train on it’s way to Oklahoma. Through Nebraska and Kansas. It’s possible for the coal to be visited by a different kind of traveler. One that we may call “A tramp.” Someone that catches a ride on a train without paying for the ticket.

One time a tramp (or a hobo, I don’t remember which), caught a ride on one of our coal trains. They forgot to wake up in time, and found their self following the lumps of coal on their next phase of the journey. You see. Once the coal reached the plant, one car at a time enters a building called the “Rotary Dumper”.

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

As each train car enters the dumper four clamps come done on the car and it rolls upside down dumping the coal into a bin below. Imagine being a tramp waking up just in time to find yourself falling into a bin full of coal. with a car full of coal dumping coal on top of you. One coal car contained 102 tons of coal (today they carry 130 tons). Today one train contains 13,300 tons of coal. This is over 26 million pounds of coal per train.

Miraculously, this passenger survived the fall and was able to call for help or someone saw him fall. He was quickly rescued and brought to safety. Needless to say, the tramp went from being penniless to being, “comfortable” very quickly. I don’t know that it made the news at the time. I think the electric company didn’t want it to become “viral” that they had dumped a hobo into a coal bin by accident. Well. They didn’t know what “going viral” meant at the time, but I’m sure they had some other phrase for it then.

Ok. Time for a Side Story:

Since I’m on the subject of someone catching a clandestine ride on a train, this is as good of a place as any to sneak in the tragic story of Mark Meeks. Well. I say it was tragic. When Mark told the story, he seemed rather proud of his experience. You see. Mark was a construction electrician. He hired on as a plant electrician in order to settle down, but in his heart I felt like he was always a construction electrician. That is, he didn’t mind moving on from place to place. Doing a job and then moving on.

Mark explained that when he was working at a construction job in Chicago where he worked for 2 years earning a ton of overtime, he figured that by the time he finished he would have saved up enough to buy a house and settle down. He was married and living in an apartment in Chicago. He didn’t spend much time at home as he was working 12 hour days at least 6 days each week. He figured that was ok, because when he was done, he would be set for life.

Unknown to him at the time, each morning when he woke up before the crack of dawn to go to work, his wife would drive to O’Hara airport and catch a plane to Dallas, Texas where she was having an affair with some guy. By the time Mark returned from work 14 hours later, she was back home. Each day, Mark was earning a ton of overtime, and his wife was burning it on airline tickets.

When the two years were over, Mark came home to his apartment to collect his wife and his things and go live in peace in some small town some where. That was when he learned that his wife had been having the affair and using all his money to do it. She was leaving him. Penniless.

Completely broke, Mark drifted around for a while. Finally one day he saw a train that was loaded down with wooden electric poles. Mark figured that wherever those poles were going, there was going to be work. So, he hopped on the train and traveled all the way from Minneapolis Minnesota riding in the cold, wedged between some wooden poles on one of the cars on the train.

The train finally arrived at its destination somewhere at a port in the Gulf of Mexico. I don’t remember if it was Mississippi or Louisiana. He watched as they unloaded the poles, waiting to see what jobs were going to be needed for whatever the poles were for. He watched as they took the large wooden poles and piled them up in the ocean. They were using them to build up the shoreline. There were no jobs.

It is when you have been beaten down to the point of breaking when you reach a very important point in your life. Do you give up, or do you pick yourself up and make something of yourself? Mark chose the latter. He was a natural fighter. He eventually ended up at our plant as contract help, and then was hired as a plant electrician.

End of side story.

Let’s follow the lump of coal after it is poured out of the coal train in the dumper…

The coal is fed onto a conveyor belt. Let’s call this Conveyor 1, (because that is what we called it in the plant). This has a choice to feed it onto belt 2 which leads up to the stack out tower, or it can feed the other way to where some day it was planned to add another conveyor with another stackout tower. This was going to go to a pile of coal for two other units that were never built.

Anyway, when the coal drops down on Conveyor 2, way under ground, it travels up to the ground level, and continues on its way up to the top of the stackout tower where it feeds onto Belt 3. Belt 3 is a short belt that is on an arm that swings out over the coal pile. The coal is fed onto the coal pile close to the stack out tower. I suppose it is called stack out, because the coal is stacked up next to the tower.

A view of the coalyard from the top of the Smoke Stack

A view of the coalyard from the top of the Smoke Stack. The tower with the conveyor running up to the top is the stack out tower. Belt 3 is the arm pointing to the right in this picture

Anyway, there are large dozers (bulldozers) and dirt movers that pickup the coal and spread it out to make room for more coal from more coal trains. As mentioned above. One train now carries 26 million pounds of coal.

Dirt Mover full of coal

Dirt Mover full of coal

the coal that is spread out on the coal pile has to stay packed down otherwise it would spontaneously combust. That is, it would catch on fire all by itself. Once coal on a coal pile catches on fire it is impossible to “reasonably” put out. You can spray all the water on it you want and it won’t go out. When a fire breaks out, you just have to drag the burning coal off of the pile and let it burn out.

In order to keep the coal from performing spontaneous combustion, the dirt movers kept it packed down. As long as the coal is packed tight, air can’t freely reach the buried coal, and it doesn’t catch fire. So, dirt movers were constantly driving back and forth on the coal pile to keep the coal well packed. Even on the picture of the coalyard above from the smoke stack, you can see two pieces of heavy equipment out on the coal pile traveling back and forth packing the coal.

Anyway, the next phase in the life of the lump of coal happens when it finds itself directly under the stack out tower, and it is fed down by a vibratory feeder onto a conveyor. In our plant, these belts were called, Belts 4, 5, 6 and 7. Belts 4 and 5 fed onto Belt 8 and belts 6 and 7 fed onto belt 9.

Belts 8 and 9 brought the coal up from under the coal pile to the top of the Crusher tower. In the picture above you can see that tower to the right of the stack out tower with the long belts coming from the bottom of the tower toward the plant. The crusher tower takes the large lumps of coal that can be the size of a baseball or a softball and crushes it down to the size of marbles and large gumballs.

Coal conveyor carrying coal to the coal silos from the coalyard

Coal conveyor carrying coal to the coal silos from the coalyard. This is the size of the coal after it has been crushed by the crusher

From the crusher tower the lump of coal which is now no more than a nugget of coal travels from the coal yard up to the plant on belts 10 and 11.

conveyor 10 and 11 are almost 1/2 mile long

conveyor 10 and 11 are almost 1/2 mile long

Up at the top of this belt in the distance you can see another tower. This tower is called the Transfer tower. Why? Well, because it transfers the coal to another set of belts, Belt 12 and 13. You can see them going up to the right to that tower in the middle between the two boilers.

The tower between the two boilers is called the Surge Bin tower. That basically means that there is a big bin there that can hold a good amount of coal to feed to either unit. At the bottom of the white part of the tower you can see that there is a section on each side. This is where the tripper galleries are located. There are two belts in each tripper, and two belts that feed to each tripper belt from the surge bin. So, just to keep counting, Belts 14 and 15 feed to unit one and belts 16 and 17 feed to unit 2 from the surge bin. then Belts 18 and 19 are the two tripper belts that dump coal into the 6 silos on unit one, while belts 20 and 21 feed the silos on unit 2.

Once in the Coal silos, the coal is through traveling on belts. The silos are positioned over things called bowl mills. The coal is fed from the silo into the bowl mill through something called a Gravimetric feeder, which is able to feed a specific amount of coal into the bowl mill. This is the point that basically decides how hot the boiler is going to be.

Once the coal leaves the gravimetric feeder and drops down to the bowl mill, it is bound for the boiler. The gravimetric feeder is tied right to the control room. When they need to raise load more than just a minimal amount, a control room operator increases the amount of coal being fed from these feeders in order to increase the flow of coal into the boiler….. I don’t know… maybe it’s more automatic than that now…. The computer probably does it these days.

When the nugget of coal falls into the bowl mill the long journey from the coal mine in Wyoming is almost complete. Its short life as a nugget is over and it is pulverized into powder. The powder is finer than flour. Another name for a bowl mill is “Pulverizer”. The coal comes from the Powder River Basin in Wyoming and just before it is consumed in Oklahoma it really does become powder.

Big rollers are used to crush the coal into fine particles. The pulverized coal is blown up pipes by the primary air fans and blown directly into the boiler where they burst into flames. A bright orange flame. The color reminds me of orange sherbet Ice cream.

The color of the fireball in the boiler

The color of the fireball in the boiler

At this point an incredible thing happens to the coal that so many years ago was a part of a tree or some other plant. The chemical process that trapped the carbon from the carbon dioxide millions of years earlier is reversed and the carbon is once again combined to the oxygen as it was many millennium ago. A burst of heat is released which had been trapped after a cooling effect below the tree as it sucked the carbon out of the environment way back then.

The heat is transferred to the boiler tubes that line the boiler. The tubes heat the water and turn it into steam. The steam shoots into the turbine that turns a generator that produces the electricity that enters every house in the country. The solar power from eons ago that allowed the tree to grow is being used today to power our world. What an amazing system.

To take this one step further, the carbon dioxide that is released into the atmosphere today is replenishing the lost carbon dioxide from many years ago. Back when plants could breathe freely. Back before the carbon dioxide level was depleted almost to the point of the extinction of plant life on this planet. Remember, what we look on as a pollutant and a poison, to a plant is a chance to grow. The Sahara desert used to be a thriving forest. Maybe it will be again some day.

So, there is the question of global warming. We humans are so short sighted sometimes. We want to keep everything the same way we found it when we were born. We try desperately to keep animals from becoming extinct. We don’t think about the bazillions (ok, so I exaggerate) of animals that were extinct long before man arrived. It is natural for extinction to occur. That is how things evolve. We are trying to keep a system the same when it has always been changing.

Years from now we may develop ways to harness the energy from the sun or even from the universe in ways that are unimaginable today. When that time arrives, let’s just hope that we remain good stewards of the world so that we are around to see it. I believe that the use of fossil fuels, (as odd as that may seem) is a major step in reviving our planet’s natural resources.

Comments from the previous repost:

twotiretirade  August 20, 2014

Glad Mark fought the good fight, still a sad story.


Antion August 21, 2014
Great read. I love knowing how things work. As I read the sad story of the traveling electrician, I kept wondering if she could have pulled that off in today’s world of air travel.


hiwaychristian August 22, 2014
when I went to the Christian College in Eugene Oregon, they forced me to take a course in biology at the University of Oregon. I willingly sat and listened to the mix of science and evolution. I admit their perspective was intriguing.
at the end of the class, the last day, the instructor asked each one of her students to tell how the class had affected their thinking.
each one gave the politically correct answer in a variety of form. all the while I sat joyfully waiting my turn.
my response hushed the class for a moment. (it’s been some decades ago so I have to paraphrase but let it be sufficient) “I’m impressed with all the material you’ve covered. it’s astounding to think of all the things that were. but for me this class has only glorified my God. because I realize that in his wisdom he created gasoline for my car.”
you’ve covered a lot of material in your post. and I’m impressed at your diligence to complete it. I thank God for His faithfulness that he has put into you. may He prosper your testimony for the glory of His Holy Son.
By His Grace
(please overlook the syntax errors in this reply it was generated on a mobile device)

Monty Hansen November 4, 2014

We processed several hobo’s through our coal system, & injured a few, but none ever got anything from the power company. I remember we would always worried about finding a chunk of scalp or something in the grating where the tripper car drops coal down into the silo. One especially memorable event was when a coal yard operator found a down vest jacket on the coal pile and bragged about how lucky he was to find this jacket, the size even fit, but the jacket did smell a little funny. yes it was ripped off the body of a hobo by the plow above conveyor one & shot out onto the coal pile by the stackout conveyor.

It was always unnerving to have a pull cord go down in the middle of the night deep down in the coal trestle, while the belts were shut down. You’d have to go down there alone, in the dark & reset the pull cords, so the belts could be started later when needed. You knew it wasn’t a trick because the whole crew had been up in the control room together eating dinner or something. You always wondered if you might run into a real hobo – or the ghost of one.

Advertisements

When Power Plant Durability and Automation Goes Too Far

Everyone expects when they enter an elevator and push a button for the 3rd floor that when the doors open they will find themselves on the third floor. It doesn’t occur to most people what actually has to happen behind the scenes for the elevator to go through the motions of carrying someone up three stories. In most cases you want an automated system that requires as little interaction as possible.

I have found while working in the Coal-fired Power Plant in North Central Oklahoma that some systems are better off with a little less than perfect automation. We might think about that as we move into a new era of automated cars, robot soldiers and automatic government shutdowns. Let me give you a for instance.

The coal trains that brought the coal from Wyoming all the way down to the plant would enter a building called “The Dumper.” Even though this sounds like a less savory place to park your locomotive, it wasn’t called a Dumper because it was a dump. It was called a Dumper because it “Dumped.” Here is a picture of a dumper:

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

The coal train would pull into this room one car at a time. I talked about the dumper in an earlier post entitled “Lifecycle of a Power Plant Lump of coal“. As each car is pulled into this building by a large clamp called the “Positioner” (How is that for a name? It is amazing how when finding names for this particular equipment they decided to go with the “practical” words. The Positioner positions the coal cars precisely in the right position so that after the car clamps come down on the car, it can be rotated upside down “Dumping” the coal into the hoppers below. No fancy names like other parts of the power Plant like the “Tripper Gallery” or the “Generator Bathtub” here.

A typical coal train has 110 cars full of coal when it enters the dumper. In the picture of the dumper above if you look in the upper left corner you will see some windows. This is the Dumper Control Room. This is where someone sits as each car pulls through the dumper and dumps the coal.

Not long after the plant was up and running the entire operation of the dumper was automated. That meant that once put into motion, the dumper and the controls would begin dumping cars and continue operating automatically until the last car was through the dumper.

Let me try to remember the sequence. I know I’ll leave something out because there are a number of steps and it has been a while since I have been so fortunate as to work on the dumper during a malfunction… But here goes…

I remember that the first coal car on the train had to positioned without the positioner because… well….. the car directly in front of the first car is, of course, the locomotive. Usually a Burlington Northern Santa Fe Engine.

A picture from Shutterstock of a locomotive pulling a coal train

A picture from Shutterstock of a locomotive pulling a coal train

Before I explain the process, let me show you a picture of the Positioner. This the machine that pulls the train forward:

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The automation begins after the first or second car is dumped. I’ll start with the second car just finishing the process as it rolls back up right after dumping the coal… The car clamps go up.

  • The rear holding arm (that holds the car in place from the entrance side of the dumper) lifts up out of the way.
  • The Positioner begins pulling the entire train forward.
  • Electric eyes on both end of the dumper detect when the next car has entered the dumper.
  • The Positioner adjusts the position of the coal car to the exact position (within an inch or two) by backing up and pulling forward a couple of times.
  • The Holding arm on the back end comes down on the couplings between the two train cars one back from the car that is going to be dumped.
  • The four car clamps come down on the train car at the same time that the dumper begins rotating.
  • The Positioner clamp lifts off of the train car couplings.
  • Water Sprayers come on that are attached to the top of the dumper so that it wets the coal in order to act as a dust suppression.
  • The Positioner travels back to the car clamp between the car that was just emptied before and the car in front of it.
  • As the train car rotates to the desired angle. (I think it’s about 145 degrees), it begins slowing down.
  • When the car has been rotated as far as desired it comes to a stop.
  • The Dumper pauses for a few seconds as all the coal is dumped from the coal car.
  • The Positioner moves back and forth until it is in just the right position for the positioner arm to lower onto the couplings between the cars.
  • The Sprayers turn off.
  • The Dumper begins returning to an upright position.
  • The Positioner arm lowers down onto the clamps between the coal cars.
  • Once the car is upright the dumper stops rotating.
  • The 4 car clamps go up.
  • The Holding arm goes up. And the process is repeated.

This is a beautiful process when it works correctly. Before I tell you about the times it doesn’t work correctly, let me tell you about how this process was a little…uh… too automated…

So. The way this worked originally, was that once the automated process was put into operation after the second car had been dumped, all the dumper control room operator had to do was sit there and look out the window at the coal cars being dumped. They may have had some paperwork they were supposed to be doing, like writing down the car numbers as they pulled through the dumper. It seems that paperwork was pretty important back then.

Each car would pull through the dumper… The coal would be dumped. The next car would be pulled in… etc.

Well. Trains come from Wyoming at any time of the day. Train operators were paid pretty well, and the locomotive engineers would come and sit in the control room while the train was being dumped. Often (more often than not it seemed) the trains would pull into the dumper in the middle of the night. Coalyard operators were on duty 24 by 7.

So, imagine this…. Imagine Walt Oswalt… a feisty sandy haired Irishman at the dumper controls around 3 in the morning watching 110 cars pull through the dumper. Dumping coal…. One after the other. I think the time it took to go from dumping one car to the next was about 2 1/2 minutes. So it took about 3 1/2 hours to dump one train (I may be way off on the time… Maybe one of the operators would like to leave a comment below with the exact time).

This meant that the dumper operator had to sit there and watch the coal cars being slowly pulled through the dumper for about 3 hours. Often in the middle of the night.

For anyone who is older than 30 years, you will remember that the last car on a train was called a Caboose. The locomotive engineers called it a “Weight Car”. This made me think that it was heavy. I don’t know. It didn’t look all that heavy to me… You decide for yourself:

A Caboose

A Caboose

Back in those days, there was a caboose on the back of every train. A person used to sit in there while the train was going down the tracks. I think it was in case the back part of the train accidentally became disconnected from the front of the train, someone would be back there to notice. That’s my guess. Anyway. Later on, a sensor was placed on the last car instead of a caboose. That’s why you don’t see them today. Or maybe it was because of something that happened one night…

You see… it isn’t easy for Walt Oswalt (I don’t mean to imply that it was Walt that was there that night.. well… it sounds like I’m implying that doesn’t it…. I use Walt when telling this story because he wouldn’t mind. I really don’t remember who it was) to keep his eyes open and attentive for 3 straight hours. Anyway… One night while the coal cars were going through the dumper automatically being dumped one by one… there was a point when the sprayers stopped spraying and the 4 car clamps rose, and there there was a moment of pause, if someone had been there to listen very carefully, they might have heard a faint snoring sound coming from the dumper control room.

That is all fine and dandy until the final car rolled into the dumper. You see… One night…. while all the creatures were sleeping (even a mouse)… the car clamps came down on the caboose. Normally the car clamps had to be raised to a higher position to keep them from tearing the top section off of the caboose.

If it had been Walt… He woke when he heard the crunching sound of the top of the caboose just in time to see the caboose as it swung upside down. He was a little too late hitting the emergency stop button. The caboose rolled over. Paused for a moment as the person manning the caboose came to a rest on the ceiling inside… then rolled back upright all dripping wet from the sprayer that had meant to keep down the dust.

As the car clamps came up… a man darted out the back of the caboose. He ran out of the dumper…. knelt down… kissed the ground… and decided from that moment on that he was going to start going back to church every Sunday. Ok. I exaggerate a little. He really limped out of the dumper.

Needless to say. A decision had to be made. It was decided that there can be too much automation at times. The relay logic was adjusted so that at the critical point where the dumper decides to dump a coal car, it had to pause and wait until the control room operator toggled the “Dump” switch on the control panel. This meant that the operator had to actively decide to dump each car.

As a software programmer…. I would have come up with another solution… such as a caboose detector…. But given the power that was being exerted when each car was being dumped it was probably a good idea that you guaranteed that the dumper control room operator actually had his eyeballs pointed toward the car being dumped instead of rolled back in his head.

I leave you with that thought as I go to another story. I will wait until another time to talk about all the times I was called out at night when the dumper had failed to function.

This is a short story of durability…

I walked in the electric shop one day as an electrician trainee in 1984 to find that Andy Tubbs had taken an old drill and hooked it up to the 480 volt power source that we used to test motors. Ok. This was an odd site. We had a three phase switch on the wall with a fairly large cable attached with three large clips so we could hook them up to motors that we had overhauled to test the amperage that they pulled to make sure they were within the specified amount according to their nameplate.

I hesitated a moment, but I couldn’t resist…. I had to ask, “Andy…. Why have you hooked up that old drill to 480? (it was a 120 volt drill). He replied matter-of-factly (Factly? Can I really say that in public?), “I am going to burn up this old drill from the Osage Plant (See “Pioneers of Power Plant Fame Finally Find Peace” for more information about Osage Plant) so that I can turn it in for a new one.

Ok. I figured there must be a policy somewhere that said that if you turned in a burned up tool they would give you a new one. I knew that Bud Schoonover down at the toolroom was always particular about how he passed out new tools (I have experienced the same thing at my new job when trying to obtain a new security cable for my laptop).

Anyway. Andy turned the 480 volts on and powered up the drill. The drill began whining as it whirled wildly. Andy stood there holding up the drill as it ran in turbo mode for about five minutes. The drill performed like a champ.

Old Power Drill

Old Power Drill

After showing no signs of burning itself up running on 480 volts instead of 120 volts, Andy let off of the trigger and set it back on the workbench. He said, “This is one tough drill! I think I’ll keep it.” Sure. It looked like something from the 1950’s (and it probably was). But, as Andy said, it was one tough drill. On that day, because of the extra Durability of that old Pioneer Power Plant Drill, Andy was robbed of a new variable speed, reversible drill that he was so craving.

new variable speed reversible drill

new variable speed reversible drill

Comments from original post:

 

Ron October 12, 2013:

Great stories!
Coal trains today have engines at the rear of the train. I hope we never try to dump one of them!

devin October 12, 2013:

It takes about 7 hrs to dump 150 car train

Bruce Kime October 12, 2013:

Wasn’t Walt but a certain marine we won’t mention. They dumped the last car & forgot to put the car clamps in the up maximum position. They give the go ahead for the train to pull the caboose through! Instant convertible caboose! Now there are break away clamps on the north side. And there are locomotives on the rear of the train because the trains are made up of 150 cars .

 

NEO October 12, 2013:

Like you, I can think of several ways to automate the process without dumping the caboose but I think the operator pushing the button may be the best. Automation can get out of hand.

Jack Curtis November 3, 2013:

An engineer used to remind us: “A machine always does what you tell it to…whether you want it to, or not.”
IF the union or the lawyers require a duty operator on an automated process, I’m all for giving him a button to push and attaching some responsibility. All automation designs are approved by Murphy…Wow! Thanks for the update Bruce!

Lifecycle of a Power Plant Lump of Coal

Originally posted August 16, 2013:

Fifty Percent of our electricity is derived from coal. Did you ever wonder what has to take place for that to happen? I thought I would walk through the lifecycle of a piece of coal to give you an idea. I will not start back when the it was still a tree in a prehistoric world where dinosaurs grew long necks to reach the branches. I will begin when the large scoop shovel digs it out of the ground and loads it onto a coal truck.

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal for the power plant in North Central Oklahoma came from Wyoming. There were trains from the Black Thunder Mine and the Powder River Basin.

Coal Trains on their way to power plants

Coal Trains on their way to power plants

It’s a long ride for the lump of coal sitting in the coal train on it’s way to Oklahoma. Through Nebraska and Kansas. It’s possible for the coal to be visited by a different kind of traveler. One that we may call “A tramp.” Someone that catches a ride on a train without paying for the ticket.

One time a tramp (or a hobo, I don’t remember which), caught a ride on one of our coal trains. They forgot to wake up in time, and found their self following the lumps of coal on their next phase of the journey. You see. Once the coal reached the plant, one car at a time enters a building called the “Rotary Dumper”.

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

As each train car enters the dumper four clamps come done on the car and it rolls upside down dumping the coal into a bin below. Imagine being a tramp waking up just in time to find yourself falling into a bin full of coal. with a car full of coal dumping coal on top of you. One coal car contained 102 tons of coal (today they carry 130 tons). Today one train contains 13,300 tons of coal. This is over 26 million pounds of coal per train.

Miraculously, this passenger survived the fall and was able to call for help or someone saw him fall. He was quickly rescued and brought to safety. Needless to say, the tramp went from being penniless to being, “comfortable” very quickly. I don’t know that it made the news at the time. I think the electric company didn’t want it to become “viral” that they had dumped a hobo into a coal bin by accident. Well. They didn’t know what “going viral” meant at the time, but I’m sure they had some other phrase for it then.

Ok. Time for a Side Story:

Since I’m on the subject of someone catching a clandestine ride on a train, this is as good of a place as any to sneak in the tragic story of Mark Meeks. Well. I say it was tragic. When Mark told the story, he seemed rather proud of his experience. You see. Mark was a construction electrician. He hired on as a plant electrician in order to settle down, but in his heart I felt like he was always a construction electrician. That is, he didn’t mind moving on from place to place. Doing a job and then moving on.

Mark explained that when he was working at a construction job in Chicago where he worked for 2 years earning a ton of overtime, he figured that by the time he finished he would have saved up enough to buy a house and settle down. He was married and living in an apartment in Chicago. He didn’t spend much time at home as he was working 12 hour days at least 6 days each week. He figured that was ok, because when he was done, he would be set for life.

Unknown to him at the time, each morning when he woke up before the crack of dawn to go to work, his wife would drive to O’Hara airport and catch a plane to Dallas, Texas where she was having an affair with some guy. By the time Mark returned from work 14 hours later, she was back home. Each day, Mark was earning a ton of overtime, and his wife was burning it on airline tickets.

When the two years were over, Mark came home to his apartment to collect his wife and his things and go live in peace in some small town some where. That was when he learned that his wife had been having the affair and using all his money to do it. She was leaving him. Penniless.

Completely broke, Mark drifted around for a while. Finally one day he saw a train that was loaded down with wooden electric poles. Mark figured that wherever those poles were going, there was going to be work. So, he hopped on the train and traveled all the way from Minneapolis Minnesota riding in the cold, wedged between some wooden poles on one of the cars on the train.

The train finally arrived at its destination somewhere at a port in the Gulf of Mexico. I don’t remember if it was Mississippi or Louisiana. He watched as they unloaded the poles, waiting to see what jobs were going to be needed for whatever the poles were for. He watched as they took the large wooden poles and piled them up in the ocean. They were using them to build up the shoreline. There were no jobs.

It is when you have been beaten down to the point of breaking when you reach a very important point in your life. Do you give up, or do you pick yourself up and make something of yourself? Mark chose the latter. He was a natural fighter. He eventually ended up at our plant as contract help, and then was hired as a plant electrician.

End of side story.

Let’s follow the lump of coal after it is poured out of the coal train in the dumper…

The coal is fed onto a conveyor belt. Let’s call this Conveyor 1, (because that is what we called it in the plant). This has a choice to feed it onto belt 2 which leads up to the stack out tower, or it can feed the other way to where some day it was planned to add another conveyor with another stackout tower. This was going to go to a pile of coal for two other units that were never built.

Anyway, when the coal drops down on Conveyor 2, way under ground, it travels up to the ground level, and continues on its way up to the top of the stackout tower where it feeds onto Belt 3. Belt 3 is a short belt that is on an arm that swings out over the coal pile. The coal is fed onto the coal pile close to the stack out tower. I suppose it is called stack out, because the coal is stacked up next to the tower.

A view of the coalyard from the top of the Smoke Stack

A view of the coalyard from the top of the Smoke Stack. The tower with the conveyor running up to the top is the stack out tower. Belt 3 is the arm pointing to the right in this picture

Anyway, there are large dozers (bulldozers) and dirt movers that pickup the coal and spread it out to make room for more coal from more coal trains. As mentioned above. One train now carries 26 million pounds of coal.

Dirt Mover full of coal

Dirt Mover full of coal

the coal that is spread out on the coal pile has to stay packed down otherwise it would spontaneously combust. That is, it would catch on fire all by itself. Once coal on a coal pile catches on fire it is impossible to “reasonably” put out. You can spray all the water on it you want and it won’t go out. When a fire breaks out, you just have to drag the burning coal off of the pile and let it burn out.

In order to keep the coal from performing spontaneous combustion, the dirt movers kept it packed down. As long as the coal is packed tight, air can’t freely reach the buried coal, and it doesn’t catch fire. So, dirt movers were constantly driving back and forth on the coal pile to keep the coal well packed. Even on the picture of the coalyard above from the smoke stack, you can see two pieces of heavy equipment out on the coal pile traveling back and forth packing the coal.

Anyway, the next phase in the life of the lump of coal happens when it finds itself directly under the stack out tower, and it is fed down by a vibratory feeder onto a conveyor. In our plant, these belts were called, Belts 4, 5, 6 and 7. Belts 4 and 5 fed onto Belt 8 and belts 6 and 7 fed onto belt 9.

Belts 8 and 9 brought the coal up from under the coal pile to the top of the Crusher tower. In the picture above you can see that tower to the right of the stack out tower with the long belts coming from the bottom of the tower toward the plant. The crusher tower takes the large lumps of coal that can be the size of a baseball or a softball and crushes it down to the size of marbles and large gumballs.

Coal conveyor carrying coal to the coal silos from the coalyard

Coal conveyor carrying coal to the coal silos from the coalyard. This is the size of the coal after it has been crushed by the crusher

From the crusher tower the lump of coal which is now no more than a nugget of coal travels from the coal yard up to the plant on belts 10 and 11.

conveyor 10 and 11 are almost 1/2 mile long

conveyor 10 and 11 are almost 1/2 mile long

Up at the top of this belt in the distance you can see another tower. This tower is called the Transfer tower. Why? Well, because it transfers the coal to another set of belts, Belt 12 and 13. You can see them going up to the right to that tower in the middle between the two boilers.

The tower between the two boilers is called the Surge Bin tower. That basically means that there is a big bin there that can hold a good amount of coal to feed to either unit. At the bottom of the white part of the tower you can see that there is a section on each side. This is where the tripper galleries are located. There are two belts in each tripper, and two belts that feed to each tripper belt from the surge bin. So, just to keep counting, Belts 14 and 15 feed to unit one and belts 16 and 17 feed to unit 2 from the surge bin. then Belts 18 and 19 are the two tripper belts that dump coal into the 6 silos on unit one, while belts 20 and 21 feed the silos on unit 2.

Once in the Coal silos, the coal is through traveling on belts. The silos are positioned over things called bowl mills. The coal is fed from the silo into the bowl mill through something called a Gravimetric feeder, which is able to feed a specific amount of coal into the bowl mill. This is the point that basically decides how hot the boiler is going to be.

Once the coal leaves the gravimetric feeder and drops down to the bowl mill, it is bound for the boiler. The gravimetric feeder is tied right to the control room. When they need to raise load more than just a minimal amount, a control room operator increases the amount of coal being fed from these feeders in order to increase the flow of coal into the boiler….. I don’t know… maybe it’s more automatic than that now…. The computer probably does it these days.

When the nugget of coal falls into the bowl mill the long journey from the coal mine in Wyoming is almost complete. Its short life as a nugget is over and it is pulverized into powder. The powder is finer than flour. Another name for a bowl mill is “Pulverizer”. The coal comes from the Powder River Basin in Wyoming and just before it is consumed in Oklahoma it really does become powder.

Big rollers are used to crush the coal into fine particles. The pulverized coal is blown up pipes by the primary air fans and blown directly into the boiler where they burst into flames. A bright orange flame. The color reminds me of orange sherbet Ice cream.

The color of the fireball in the boiler

The color of the fireball in the boiler

At this point an incredible thing happens to the coal that so many years ago was a part of a tree or some other plant. The chemical process that trapped the carbon from the carbon dioxide millions of years earlier is reversed and the carbon is once again combined to the oxygen as it was many millennium ago. A burst of heat is released which had been trapped after a cooling effect below the tree as it sucked the carbon out of the environment way back then.

The heat is transferred to the boiler tubes that line the boiler. The tubes heat the water and turn it into steam. The steam shoots into the turbine that turns a generator that produces the electricity that enters every house in the country. The solar power from eons ago that allowed the tree to grow is being used today to power our world. What an amazing system.

To take this one step further, the carbon dioxide that is released into the atmosphere today is replenishing the lost carbon dioxide from many years ago. Back when plants could breathe freely. Back before the carbon dioxide level was depleted almost to the point of the extinction of plant life on this planet. Remember, what we look on as a pollutant and a poison, to a plant is a chance to grow. The Sahara desert used to be a thriving forest. Maybe it will be again some day.

So, there is the question of global warming. We humans are so short sighted sometimes. We want to keep everything the same way we found it when we were born. We try desperately to keep animals from becoming extinct. We don’t think about the bazillions (ok, so I exaggerate) of animals that were extinct long before man arrived. It is natural for extinction to occur. That is how things evolve. We are trying to keep a system the same when it has always been changing.

Years from now we may develop ways to harness the energy from the sun or even from the universe in ways that are unimaginable today. When that time arrives, let’s just hope that we remain good stewards of the world so that we are around to see it. I believe that the use of fossil fuels, (as odd as that may seem) is a major step in reviving our planet’s natural resources.

Comments from the previous repost:

twotiretirade  August 20, 2014

Glad Mark fought the good fight, still a sad story.


Antion August 21, 2014
Great read. I love knowing how things work. As I read the sad story of the traveling electrician, I kept wondering if she could have pulled that off in today’s world of air travel.


hiwaychristian August 22, 2014
when I went to the Christian College in Eugene Oregon, they forced me to take a course in biology at the University of Oregon. I willingly sat and listened to the mix of science and evolution. I admit their perspective was intriguing.
at the end of the class, the last day, the instructor asked each one of her students to tell how the class had affected their thinking.
each one gave the politically correct answer in a variety of form. all the while I sat joyfully waiting my turn.
my response hushed the class for a moment. (it’s been some decades ago so I have to paraphrase but let it be sufficient) “I’m impressed with all the material you’ve covered. it’s astounding to think of all the things that were. but for me this class has only glorified my God. because I realize that in his wisdom he created gasoline for my car.”
you’ve covered a lot of material in your post. and I’m impressed at your diligence to complete it. I thank God for His faithfulness that he has put into you. may He prosper your testimony for the glory of His Holy Son.
By His Grace
(please overlook the syntax errors in this reply it was generated on a mobile device)

Monty Hansen November 4, 2014

We processed several hobo’s through our coal system, & injured a few, but none ever got anything from the power company. I remember we would always worried about finding a chunk of scalp or something in the grating where the tripper car drops coal down into the silo. One especially memorable event was when a coal yard operator found a down vest jacket on the coal pile and bragged about how lucky he was to find this jacket, the size even fit, but the jacket did smell a little funny. yes it was ripped off the body of a hobo by the plow above conveyor one & shot out onto the coal pile by the stackout conveyor.

It was always unnerving to have a pull cord go down in the middle of the night deep down in the coal trestle, while the belts were shut down. You’d have to go down there alone, in the dark & reset the pull cords, so the belts could be started later when needed. You knew it wasn’t a trick because the whole crew had been up in the control room together eating dinner or something. You always wondered if you might run into a real hobo – or the ghost of one.

When Power Plant Durability and Automation Goes Too Far

Everyone expects when they enter an elevator and push a button for the 3rd floor that when the doors open they will find themselves on the third floor. It doesn’t occur to most people what actually has to happen behind the scenes for the elevator to go through the motions of carrying someone up three stories. In most cases you want an automated system that requires as little interaction as possible.

I have found while working in the Coal-fired Power Plant in North Central Oklahoma that some systems are better off with a little less than perfect automation. We might think about that as we move into a new era of automated cars, robot soldiers and automatic government shutdowns. Let me give you a for instance.

The coal trains that brought the coal from Wyoming all the way down to the plant would enter a building called “The Dumper.” Even though this sounds like a less savory place to park your locomotive, it wasn’t called a Dumper because it was a dump. It was called a Dumper because it “Dumped.” Here is a picture of a dumper:

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

The coal train would pull into this room one car at a time. I talked about the dumper in an earlier post entitled “Lifecycle of a Power Plant Lump of coal“. As each car is pulled into this building by a large clamp called the “Positioner” (How is that for a name? It is amazing how when finding names for this particular equipment they decided to go with the “practical” words. The Positioner positions the coal cars precisely in the right position so that after the car clamps come down on the car, it can be rotated upside down “Dumping” the coal into the hoppers below. No fancy names like other parts of the power Plant like the “Tripper Gallery” or the “Generator Bathtub” here.

A typical coal train has 110 cars full of coal when it enters the dumper. In the picture of the dumper above if you look in the upper left corner you will see some windows. This is the Dumper Control Room. This is where someone sits as each car pulls through the dumper and dumps the coal.

Not long after the plant was up and running the entire operation of the dumper was automated. That meant that once put into motion, the dumper and the controls would begin dumping cars and continue operating automatically until the last car was through the dumper.

Let me try to remember the sequence. I know I’ll leave something out because there are a number of steps and it has been a while since I have been so fortunate as to work on the dumper during a malfunction… But here goes…

I remember that the first coal car on the train had to positioned without the positioner because… well….. the car directly in front of the first car is, of course, the locomotive. Usually a Burlington Northern Santa Fe Engine.

A picture from Shutterstock of a locomotive pulling a coal train

A picture from Shutterstock of a locomotive pulling a coal train

Before I explain the process, let me show you a picture of the Positioner. This the machine that pulls the train forward:

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The automation begins after the first or second car is dumped. I’ll start with the second car just finishing the process as it rolls back up right after dumping the coal… The car clamps go up.

  • The rear holding arm (that holds the car in place from the entrance side of the dumper) lifts up out of the way.
  • The Positioner begins pulling the entire train forward.
  • Electric eyes on both end of the dumper detect when the next car has entered the dumper.
  • The Positioner adjusts the position of the coal car to the exact position (within an inch or two) by backing up and pulling forward a couple of times.
  • The Holding arm on the back end comes down on the couplings between the two train cars one back from the car that is going to be dumped.
  • The four car clamps come down on the train car at the same time that the dumper begins rotating.
  • The Positioner clamp lifts off of the train car couplings.
  • Water Sprayers come on that are attached to the top of the dumper so that it wets the coal in order to act as a dust suppression.
  • The Positioner travels back to the car clamp between the car that was just emptied before and the car in front of it.
  • As the train car rotates to the desired angle. (I think it’s about 145 degrees), it begins slowing down.
  • When the car has been rotated as far as desired it comes to a stop.
  • The Dumper pauses for a few seconds as all the coal is dumped from the coal car.
  • The Positioner moves back and forth until it is in just the right position for the positioner arm to lower onto the couplings between the cars.
  • The Sprayers turn off.
  • The Dumper begins returning to an upright position.
  • The Positioner arm lowers down onto the clamps between the coal cars.
  • Once the car is upright the dumper stops rotating.
  • The 4 car clamps go up.
  • The Holding arm goes up. And the process is repeated.

This is a beautiful process when it works correctly. Before I tell you about the times it doesn’t work correctly, let me tell you about how this process was a little…uh… too automated…

So. The way this worked originally, was that once the automated process was put into operation after the second car had been dumped, all the dumper control room operator had to do was sit there and look out the window at the coal cars being dumped. They may have had some paperwork they were supposed to be doing, like writing down the car numbers as they pulled through the dumper. It seems that paperwork was pretty important back then.

Each car would pull through the dumper… The coal would be dumped. The next car would be pulled in… etc.

Well. Trains come from Wyoming at any time of the day. Train operators were paid pretty well, and the locomotive engineers would come and sit in the control room while the train was being dumped. Often (more often than not it seemed) the trains would pull into the dumper in the middle of the night. Coalyard operators were on duty 24 by 7.

So, imagine this…. Imagine Walt Oswalt… a feisty sandy haired Irishman at the dumper controls around 3 in the morning watching 110 cars pull through the dumper. Dumping coal…. One after the other. I think the time it took to go from dumping one car to the next was about 2 1/2 minutes. So it took about 3 1/2 hours to dump one train (I may be way off on the time… Maybe one of the operators would like to leave a comment below with the exact time).

This meant that the dumper operator had to sit there and watch the coal cars being slowly pulled through the dumper for about 3 hours. Often in the middle of the night.

For anyone who is older than 25 years, you will remember that the last car on a train was called a Caboose. The locomotive engineers called it a “Weight Car”. This made me think that it was heavy. I don’t know. It didn’t look all that heavy to me… You decide for yourself:

A Caboose

A Caboose

Back in those days, there was a caboose on the back of every train. A person used to sit in there while the train was going down the tracks. I think it was in case the back part of the train accidentally became disconnected from the front of the train, someone would be back there to notice. That’s my guess. Anyway. Later on, a sensor was placed on the last car instead of a caboose. That’s why you don’t see them today. Or maybe it was because of something that happened one night…

You see… it isn’t easy for Walt Oswalt (I don’t mean to imply that it was Walt that was there that night.. well… it sounds like I’m implying that doesn’t it…. I use Walt when telling this story because he wouldn’t mind. I really don’t remember who it was) to keep his eyes open and attentive for 3 straight hours. Anyway… One night while the coal cars were going through the dumper automatically being dumped one by one… there was a point when the sprayers stopped spraying and the 4 car clamps rose, and there there was a moment of pause, if someone had been there to listen very carefully, they might have heard a faint snoring sound coming from the dumper control room.

That is all fine and dandy until the final car rolled into the dumper. You see… One night…. while all the creatures were sleeping (even a mouse)… the car clamps came down on the caboose. Normally the car clamps had to be raised to a higher position to keep them from tearing the top section off of the caboose.

If it had been Walt… He woke when he heard the crunching sound of the top of the caboose just in time to see the caboose as it swung upside down. He was a little too late hitting the emergency stop button. The caboose rolled over. Paused for a moment as the person manning the caboose came to a rest on the ceiling inside… then rolled back upright all dripping wet from the sprayer that had meant to keep down the dust.

As the car clamps came up… a man darted out the back of the caboose. He ran out of the dumper…. knelt down… kissed the ground… and decided from that moment on that he was going to start going back to church every Sunday. Ok. I exaggerate a little. He really limped out of the dumper.

Needless to say. A decision had to be made. It was decided that there can be too much automation at times. The relay logic was adjusted so that at the critical point where the dumper decides to dump a coal car, it had to pause and wait until the control room operator toggled the “Dump” switch on the control panel. This meant that the operator had to actively decide to dump each car.

As a software programmer…. I would have come up with another solution… such as a caboose detector…. But given the power that was being exerted when each car was being dumped it was probably a good idea that you guaranteed that the dumper control room operator actually had his eyeballs pointed toward the car being dumped instead of rolled back in his head.

I leave you with that thought as I go to another story. I will wait until another time to talk about all the times I was called out at night when the dumper had failed to function.

This is a short story of durability…

I walked in the electric shop one day as an electrician trainee in 1984 to find that Andy Tubbs had taken an old drill and hooked it up to the 480 volt power source that we used to test motors. Ok. This was an odd site. We had a three phase switch on the wall with a fairly large cable attached with three large clips so we could hook them up to motors that we had overhauled to test the amperage that they pulled to make sure they were within the specified amount according to their nameplate.

I hesitated a moment, but I couldn’t resist…. I had to ask, “Andy…. Why have you hooked up that old drill to 480? (it was a 120 volt drill). He replied matter-of-factly (Factly? Can I really say that in public?), “I am going to burn up this old drill from the Osage Plant (See “Pioneers of Power Plant Fame Finally Find Peace” for more information about Osage Plant) so that I can turn it in for a new one.

Ok. I figured there must be a policy somewhere that said that if you turned in a burned up tool they would give you a new one. I knew that Bud Schoonover down at the toolroom was always particular about how he passed out new tools (I have experienced the same thing at my new job when trying to obtain a new security cable for my laptop).

Anyway. Andy turned the 480 volts on and powered up the drill. The drill began whining as it whirled wildly. Andy stood there holding up the drill as it ran in turbo mode for about five minutes. The drill performed like a champ.

Old Power Drill

Old Power Drill

After showing no signs of burning itself up running on 480 volts instead of 120 volts, Andy let off of the trigger and set it back on the workbench. He said, “This is one tough drill! I think I’ll keep it.” Sure. It looked like something from the 1950’s (and it probably was). But, as Andy said, it was one tough drill. On that day, because of the extra Durability of that old Pioneer Power Plant Drill, Andy was robbed of a new variable speed, reversible drill that he was so craving.

new variable speed reversible drill

new variable speed reversible drill

Comments from original post:

 

Ron October 12, 2013:

Great stories!
Coal trains today have engines at the rear of the train. I hope we never try to dump one of them!

devin October 12, 2013:

It takes about 7 hrs to dump 150 car train

Bruce Kime October 12, 2013:

Wasn’t Walt but a certain marine we won’t mention. They dumped the last car & forgot to put the car clamps in the up maximum position. They give the go ahead for the train to pull the caboose through! Instant convertible caboose! Now there are break away clamps on the north side. And there are locomotives on the rear of the train because the trains are made up of 150 cars .

 

NEO October 12, 2013:

Like you, I can think of several ways to automate the process without dumping the caboose but I think the operator pushing the button may be the best. Automation can get out of hand.

Jack Curtis November 3, 2013:

An engineer used to remind us: “A machine always does what you tell it to…whethr you want it to, or not.”
IF the union or the lawyers require a duty operator on an automated process, I’m all for giving him a button to push and attaching some responsibility. All automation designs are approved by Murphy…Wow! Thanks for the update Bruce!

When Power Plant Durability and Automation Goes Too Far

Everyone expects when they enter an elevator and push a button for the 3rd floor that when the doors open they will find themselves on the third floor. It doesn’t occur to most people what actually has to happen behind the scenes for the elevator to go through the motions of carrying someone up three stories. In most cases you want an automated system that requires as little interaction as possible.

I have found while working in the Coal-fired Power Plant in North Central Oklahoma that some systems are better off with a little less than perfect automation. We might think about that as we move into a new era of automated cars, robot soldiers and automatic government shutdowns. Let me give you a for instance.

The coal trains that brought the coal from Wyoming all the way down to the plant would enter a building called “The Dumper.” Even though this sounds like a less savory place to park your locomotive, it wasn’t called a Dumper because it was a dump. It was called a Dumper because it “Dumped.” Here is a picture of a dumper:

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

The coal train would pull into this room one car at a time. I talked about the dumper in an earlier post entitled “Lifecycle of a Power Plant Lump of coal“. As each car is pulled into this building by a large clamp called the “Positioner” (How is that for a name? It is amazing how when finding names for this particular equipment they decided to go with the “practical” words. The Positioner positions the coal cars precisely in the right position so that after the car clamps come down on the car, it can be rotated upside down “Dumping” the coal into the hoppers below. No fancy names like other parts of the power Plant like the “Tripper Gallery” or the “Generator Bathtub” here.

A typical coal train has 110 cars full of coal when it enters the dumper. In the picture of the dumper above if you look in the upper left corner you will see some windows. This is the Dumper Control Room. This is where someone sits as each car pulls through the dumper and dumps the coal.

Not long after the plant was up and running the entire operation of the dumper was automated. That meant that once put into motion, the dumper and the controls would begin dumping cars and continue operating automatically until the last car was through the dumper.

Let me try to remember the sequence. I know I’ll leave something out because there are a number of steps and it has been a while since I have been so fortunate as to work on the dumper during a malfunction… But here goes…

I remember that the first coal car on the train had to positioned without the positioner because… well….. the car directly in front of the first car is, of course, the locomotive. Usually a Burlington Northern Santa Fe Engine.

A picture from Shutterstock of a locomotive pulling a coal train

A picture from Shutterstock of a locomotive pulling a coal train

Before I explain the process, let me show you a picture of the Positioner. This the machine that pulls the train forward:

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The automation begins after the first or second car is dumped. I’ll start with the second car just finishing the process as it rolls back up right after dumping the coal… The car clamps go up.

  • The rear holding arm (that holds the car in place from the entrance side of the dumper) lifts up out of the way.
  • The Positioner begins pulling the entire train forward.
  • Electric eyes on both end of the dumper detect when the next car has entered the dumper.
  • The Positioner adjusts the position of the coal car to the exact position (within an inch or two) by backing up and pulling forward a couple of times.
  • The Holding arm on the back end comes down on the couplings between the two train cars one back from the car that is going to be dumped.
  • The four car clamps come down on the train car at the same time that the dumper begins rotating.
  • The Positioner clamp lifts off of the train car couplings.
  • Water Sprayers come on that are attached to the top of the dumper so that it wets the coal in order to act as a dust suppression.
  • The Positioner travels back to the car clamp between the car that was just emptied before and the car in front of it.
  • As the train car rotates to the desired angle. (I think it’s about 145 degrees), it begins slowing down.
  • When the car has been rotated as far as desired it comes to a stop.
  • The Dumper pauses for a few seconds as all the coal is dumped from the coal car.
  • The Positioner moves back and forth until it is in just the right position for the positioner arm to lower onto the couplings between the cars.
  • The Sprayers turn off.
  • The Dumper begins returning to an upright position.
  • The Positioner arm lowers down onto the clamps between the coal cars.
  • Once the car is upright the dumper stops rotating.
  • The 4 car clamps go up.
  • The Holding arm goes up. And the process is repeated.

This is a beautiful process when it works correctly. Before I tell you about the times it doesn’t work correctly, let me tell you about how this process was a little…uh… too automated…

So. The way this worked originally, was that once the automated process was put into operation after the second car had been dumped, all the dumper control room operator had to do was sit there and look out the window at the coal cars being dumped. They may have had some paperwork they were supposed to be doing, like writing down the car numbers as they pulled through the dumper. It seems that paperwork was pretty important back then.

Each car would pull through the dumper… The coal would be dumped. The next car would be pulled in… etc.

Well. Trains come from Wyoming at any time of the day. Train operators were paid pretty well, and the locomotive engineers would come and sit in the control room while the train was being dumped. Often (more often than not it seemed) the trains would pull into the dumper in the middle of the night. Coalyard operators were on duty 24 by 7.

So, imagine this…. Imagine Walt Oswalt… a feisty sandy haired Irishman at the dumper controls around 3 in the morning watching 110 cars pull through the dumper. Dumping coal…. One after the other. I think the time it took to go from dumping one car to the next was about 2 1/2 minutes. So it took about 3 1/2 hours to dump one train (I may be way off on the time… Maybe one of the operators would like to leave a comment below with the exact time).

This meant that the dumper operator had to sit there and watch the coal cars being slowly pulled through the dumper for about 3 hours. Often in the middle of the night.

For anyone who is older than 25 years, you will remember that the last car on a train was called a Caboose. The locomotive engineers called it a “Weight Car”. This made me think that it was heavy. I don’t know. It didn’t look all that heavy to me… You decide for yourself:

A Caboose

A Caboose

Back in those days, there was a caboose on the back of every train. A person used to sit in there while the train was going down the tracks. I think it was in case the back part of the train accidentally became disconnected from the front of the train, someone would be back there to notice. That’s my guess. Anyway. Later on, a sensor was placed on the last car instead of a caboose. That’s why you don’t see them today. Or maybe it was because of something that happened one night…

You see… it isn’t easy for Walt Oswalt (I don’t mean to imply that it was Walt that was there that night.. well… it sounds like I’m implying that doesn’t it…. I use Walt when telling this story because he wouldn’t mind. I really don’t remember who it was) to keep his eyes open and attentive for 3 straight hours. Anyway… One night while the coal cars were going through the dumper automatically being dumped one by one… there was a point when the sprayers stopped spraying and the 4 car clamps rose, and there there was a moment of pause, if someone had been there to listen very carefully, they might have heard a faint snoring sound coming from the dumper control room.

That is all fine and dandy until the final car rolled into the dumper. You see… One night…. while all the creatures were sleeping (not even a mouse)… the car clamps came down on the caboose. Normally the car clamps had to be raised to a higher position to keep them from tearing the top section off of the caboose.

If it had been Walt… He woke when he heard the crunching sound of the top of the caboose just in time to see the caboose as it swung upside down. He was a little too late hitting the emergency stop button. The caboose rolled over. Paused for a moment as the person manning the caboose came to a rest on the ceiling inside… then rolled back upright all dripping wet from the sprayer that had meant to keep down the dust.

As the car clamps came up… a man darted out the back of the caboose. He ran out of the dumper…. knelt down… kissed the ground… and decided from that moment on that he was going to start going back to church every Sunday. Ok. I exaggerate a little. He really limped out of the dumper.

Needless to say. A decision had to be made. It was decided that there can be too much automation at times. The relay logic was adjusted so that at the critical point where the dumper decides to dump a coal car, it had to pause and wait until the control room operator toggled the “Dump” switch on the control panel. This meant that the operator had to actively decide to dump each car.

As a software programmer…. I would have come up with another solution… such as a caboose detector…. But given the power that was being exerted when each car was being dumped it was probably a good idea that you guaranteed that the dumper control room operator actually had his eyeballs pointed toward the car being dumped instead of rolled back in his head.

I leave you with that thought as I go to another story. I will wait until another time to talk about all the times I was called out at night when the dumper had failed to function.

This is a short story of durability…

I walked in the electric shop one day as an electrician trainee in 1984 to find that Andy Tubbs had taken an old drill and hooked it up to the 480 volt power source that we used to test motors. Ok. This was an odd site. We had a three phase switch on the wall with a fairly large cable attached with three large clips so we could hook them up to motors that we had overhauled to test the amperage that they pulled to make sure they were within the specified amount according to their nameplate.

I hesitated a moment, but I couldn’t resist…. I had to ask, “Andy…. Why have you hooked up that old drill to 480? (it was a 120 volt drill). He replied matter-of-factly (Factly? Can I really say that in public?), “I am going to burn up this old drill from the Osage Plant (See “Pioneers of Power Plant Fame Finally Find Peace” for more information about Osage Plant) so that I can turn it in for a new one.

Ok. I figured there must be a policy somewhere that said that if you turned in a burned up tool they would give you a new one. I knew that Bud Schoonover down at the toolroom was always particular about how he passed out new tools (I have experienced the same thing at my new job when trying to obtain a new security cable for my laptop).

Anyway. Andy turned the 480 volts on and powered up the drill. The drill began whining as it whirled wildly. Andy stood there holding up the drill as it ran in turbo mode for about five minutes. The drill performed like a champ.

Old Power Drill

Old Power Drill

After showing no signs of burning itself up running on 480 volts instead of 120 volts, Andy let off of the trigger and set it back on the workbench. He said, “This is one tough drill! I think I’ll keep it.” Sure. It looked like something from the 1950’s (and it probably was). But, as Andy said, it was one tough drill. On that day, because of the extra Durability of that old Pioneer Power Plant Drill, Andy was robbed of a new variable speed, reversible drill that he was so craving.

new variable speed reversible drill

new variable speed reversible drill

Comments from original post:

 

Ron October 12, 2013:

Great stories!
Coal trains today have engines at the rear of the train. I hope we never try to dump one of them!

devin October 12, 2013:

It takes about 7 hrs to dump 150 car train

Bruce Kime October 12, 2013:

Wasn’t Walt but a certain marine we won’t mention. They dumped the last car & forgot to put the car clamps in the up maximum position. They give the go ahead for the train to pull the caboose through! Instant convertible caboose! Now there are break away clamps on the north side. And there are locomotives on the rear of the train because the trains are made up of 150 cars .

 

NEO October 12, 2013:

Like you, I can think of several ways to automate the process without dumping the caboose but I think the operator pushing the button may be the best. Automation can get out of hand.

Jack Curtis November 3, 2013:

An engineer used to remind us: “A machine always does what you tell it to…whethr you want it to, or not.”
IF the union or the lawyers require a duty operator on an automated process, I’m all for giving him a button to push and attaching some responsibility. All automation designs are approved by Murphy…Wow! Thanks for the update Bruce!

Lifecycle of a Power Plant Lump of Coal

Originally posted August 16, 2013:

Fifty Percent of our electricity is derived from coal. Did you ever wonder what has to take place for that to happen? I thought I would walk through the lifecycle of a piece of coal to give you an idea. I will not start back when the it was still a tree in a prehistoric world where dinosaurs grew long necks to reach the branches. I will begin when the large scoop shovel digs it out of the ground and loads it onto a coal truck.

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal for the power plant in North Central Oklahoma came from Wyoming. There were trains from the Black Thunder Mine and the Powder River Basin.

Coal Trains on their way to power plants

Coal Trains on their way to power plants

It’s a long ride for the lump of coal sitting in the coal train on it’s way to Oklahoma. Through Nebraska and Kansas. It’s possible for the coal to be visited by a different kind of traveler. One that we may call “A tramp.” Someone that catches a ride on a train without paying for the ticket.

One time a tramp (or a hobo, I don’t remember which), caught a ride on one of our coal trains. They forgot to wake up in time, and found their self following the lumps of coal on their next phase of the journey. You see. Once the coal reached the plant, one car at a time enters a building called the “Rotary Dumper”.

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

As each train car enters the dumper four clamps come done on the car and it rolls upside down dumping the coal into a bin below. Imagine being a tramp waking up just in time to find yourself falling into a bin full of coal. with a car full of coal dumping coal on top of you. One coal car contained 102 tons of coal (today they carry 130 tons). Today one train contains 13,300 tons of coal. This is over 26 million pounds of coal per train.

Miraculously, this passenger survived the fall and was able to call for help or someone saw him fall. He was quickly rescued and brought to safety. Needless to say, the tramp went from being penniless to being, “comfortable” very quickly. I don’t know that it made the news at the time. I think the electric company didn’t want it to become “viral” that they had dumped a hobo into a coal bin by accident. Well. They didn’t know what “going viral” meant at the time, but I’m sure they had some other phrase for it then.

Ok. Time for a Side Story:

Since I’m on the subject of someone catching a clandestine ride on a train, this is as good of a place as any to sneak in the tragic story of Mark Meeks. Well. I say it was tragic. When Mark told the story, he seemed rather proud of his experience. You see. Mark was a construction electrician. He hired on as a plant electrician in order to settle down, but in his heart I felt like he was always a construction electrician. That is, he didn’t mind moving on from place to place. Doing a job and then moving on.

Mark explained that when he was working at a construction job in Chicago where he worked for 2 years earning a ton of overtime, he figured that by the time he finished he would have saved up enough to buy a house and settle down. He was married and living in an apartment in Chicago. He didn’t spend much time at home as he was working 12 hour days at least 6 days each week. He figured that was ok, because when he was done, he would be set for life.

Unknown to him at the time, each morning when he woke up before the crack of dawn to go to work, his wife would drive to O’Hara airport and catch a plane to Dallas, Texas where she was having an affair with some guy. By the time Mark returned from work 14 hours later, she was back home. Each day, Mark was earning a ton of overtime, and his wife was burning it on airline tickets.

When the two years were over, Mark came home to his apartment to collect his wife and his things and go live in peace in some small town some where. That was when he learned that his wife had been having the affair and using all his money to do it. She was leaving him. Penniless.

Completely broke, Mark drifted around for a while. Finally one day he saw a train that was loaded down with wooden electric poles. Mark figured that wherever those poles were going, there was going to be work. So, he hopped on the train and traveled all the way from Minneapolis Minnesota riding in the cold, wedged between some wooden poles on one of the cars on the train.

The train finally arrived at its destination somewhere at a port in the Gulf of Mexico. I don’t remember if it was Mississippi or Louisiana. He watched as they unloaded the poles, waiting to see what jobs were going to be needed for whatever the poles were for. He watched as they took the large wooden poles and piled them up in the ocean. They were using them to build up the shoreline. There were no jobs.

It is when you have been beaten down to the point of breaking when you reach a very important point in your life. Do you give up, or do you pick yourself up and make something of yourself? Mark chose the latter. He was a natural fighter. He eventually ended up at our plant as contract help, and then was hired as a plant electrician.

End of side story.

Let’s follow the lump of coal after it is poured out of the coal train in the dumper…

The coal is fed onto a conveyor belt. Let’s call this Conveyor 1, (because that is what we called it in the plant). This has a choice to feed it onto belt 2 which leads up to the stack out tower, or it can feed the other way to where some day it was planned to add another conveyor with another stackout tower. This was going to go to a pile of coal for two other units that were never built.

Anyway, when the coal drops down on Conveyor 2, way under ground, it travels up to the ground level, and continues on its way up to the top of the stackout tower where it feeds onto Belt 3. Belt 3 is a short belt that is on an arm that swings out over the coal pile. The coal is fed onto the coal pile close to the stack out tower. I suppose it is called stack out, because the coal is stacked up next to the tower.

A view of the coalyard from the top of the Smoke Stack

A view of the coalyard from the top of the Smoke Stack. The tower with the conveyor running up to the top is the stack out tower. Belt 3 is the arm pointing to the right in this picture

Anyway, there are large dozers (bulldozers) and dirt movers that pickup the coal and spread it out to make room for more coal from more coal trains. As mentioned above. One train now carries 26 million pounds of coal.

Dirt Mover full of coal

Dirt Mover full of coal

the coal that is spread out on the coal pile has to stay packed down otherwise it would spontaneously combust. That is, it would catch on fire all by itself. Once coal on a coal pile catches on fire it is impossible to “reasonably” put out. You can spray all the water on it you want and it won’t go out. When a fire breaks out, you just have to drag the burning coal off of the pile and let it burn out.

In order to keep the coal from performing spontaneous combustion, the dirt movers kept it packed down. As long as the coal is packed tight, air can’t freely reach the buried coal, and it doesn’t catch fire. So, dirt movers were constantly driving back and forth on the coal pile to keep the coal well packed. Even on the picture of the coalyard above from the smoke stack, you can see two pieces of heavy equipment out on the coal pile traveling back and forth packing the coal.

Anyway, the next phase in the life of the lump of coal happens when it finds itself directly under the stack out tower, and it is fed down by a vibratory feeder onto a conveyor. In our plant, these belts were called, Belts 4, 5, 6 and 7. Belts 4 and 5 fed onto Belt 8 and belts 6 and 7 fed onto belt 9.

Belts 8 and 9 brought the coal up from under the coal pile to the top of the Crusher tower. In the picture above you can see that tower to the right of the stack out tower with the long belts coming from the bottom of the tower toward the plant. The crusher tower takes the large lumps of coal that can be the size of a baseball or a softball and crushes it down to the size of marbles and large gumballs.

Coal conveyor carrying coal to the coal silos from the coalyard

Coal conveyor carrying coal to the coal silos from the coalyard. This is the size of the coal after it has been crushed by the crusher

From the crusher tower the lump of coal which is now no more than a nugget of coal travels from the coal yard up to the plant on belts 10 and 11.

conveyor 10 and 11 are almost 1/2 mile long

conveyor 10 and 11 are almost 1/2 mile long

Up at the top of this belt in the distance you can see another tower. This tower is called the Transfer tower. Why? Well, because it transfers the coal to another set of belts, Belt 12 and 13. You can see them going up to the right to that tower in the middle between the two boilers.

The tower between the two boilers is called the Surge Bin tower. That basically means that there is a big bin there that can hold a good amount of coal to feed to either unit. At the bottom of the white part of the tower you can see that there is a section on each side. This is where the tripper galleries are located. There are two belts in each tripper, and two belts that feed to each tripper belt from the surge bin. So, just to keep counting, Belts 14 and 15 feed to unit one and belts 16 and 17 feed to unit 2 from the surge bin. then Belts 18 and 19 are the two tripper belts that dump coal into the 6 silos on unit one, while belts 20 and 21 feed the silos on unit 2.

Once in the Coal silos, the coal is through traveling on belts. The silos are positioned over things called bowl mills. The coal is fed from the silo into the bowl mill through something called a Gravimetric feeder, which is able to feed a specific amount of coal into the bowl mill. This is the point that basically decides how hot the boiler is going to be.

Once the coal leaves the gravimetric feeder and drops down to the bowl mill, it is bound for the boiler. The gravimetric feeder is tied right to the control room. When they need to raise load more than just a minimal amount, a control room operator increases the amount of coal being fed from these feeders in order to increase the flow of coal into the boiler….. I don’t know… maybe it’s more automatic than that now…. The computer probably does it these days.

When the nugget of coal falls into the bowl mill the long journey from the coal mine in Wyoming is almost complete. Its short life as a nugget is over and it is pulverized into powder. The powder is finer than flour. Another name for a bowl mill is “Pulverizer”. The coal comes from the Powder River Basin in Wyoming and just before it is consumed in Oklahoma it really does become powder.

Big rollers are used to crush the coal into fine particles. The pulverized coal his blown up pipes by the primary air fans and blown directly into the boiler where they burst into flames. A bright orange flame. The color reminds me of orange sherbet Ice cream.

The color of the fireball in the boiler

The color of the fireball in the boiler

At this point an incredible thing happens to the coal that so many years ago was a part of a tree or some other plant. The chemical process that trapped the carbon from the carbon dioxide millions of years earlier is reversed and the carbon is once again combined to the oxygen as it was many millennium ago. A burst of heat is released which had been trapped after a cooling effect below the tree as it sucked the carbon out of the environment way back then.

The heat is transferred to the boiler tubes that line the boiler. The tubes heat the water and turn it into steam. The steam shoots into the turbine that turns a generator that produces the electricity that enters every house in the country. The solar power from eons ago that allowed the tree to grow is being used today to power our world. What an amazing system.

To take this one step further, the carbon dioxide that is released into the atmosphere today is replenishing the lost carbon dioxide from many years ago. Back when plants could breathe freely. Back before the carbon dioxide level was depleted almost to the point of the extinction of plant life on this planet. Remember, what we look on as a pollutant and a poison, to a plant is a chance to grow. The Sahara desert used to be a thriving forest. Maybe it will be again some day.

So, there is the question of global warming. We humans are so short sighted sometimes. We want to keep everything the same way we found it when we were born. We try desperately to keep animals from becoming extinct. We don’t think about the bazillions (ok, so I exaggerate) of animals that were extinct long before man arrived. It is natural for extinction to occur. That is how things evolve. We are trying to keep a system the same when it has always been changing.

Years from now we may develop ways to harness the energy from the sun or even from the universe in ways that are unimaginable today. When that time arrives, let’s just hope that we remain good stewards of the world so that we are around to see it. I believe that the use of fossil fuels, (as odd as that may seem) is a major step in reviving our planet’s natural resources.

Comments from the previous repost:

twotiretirade  August 20, 2014

Glad Mark fought the good fight, still a sad story.


Antion August 21, 2014
Great read. I love knowing how things work. As I read the sad story of the traveling electrician, I kept wondering if she could have pulled that off in today’s world of air travel.


hiwaychristian August 22, 2014
when I went to the Christian College in Eugene Oregon, they forced me to take a course in biology at the University of Oregon. I willingly sat and listened to the mix of science and evolution. I admit their perspective was intriguing.
at the end of the class, the last day, the instructor asked each one of her students to tell how the class had affected their thinking.
each one gave the politically correct answer in a variety of form. all the while I sat joyfully waiting my turn.
my response hushed the class for a moment. (it’s been some decades ago so I have to paraphrase but let it be sufficient) “I’m impressed with all the material you’ve covered. it’s astounding to think of all the things that were. but for me this class has only glorified my God. because I realize that in his wisdom he created gasoline for my car.”
you’ve covered a lot of material in your post. and I’m impressed at your diligence to complete it. I thank God for His faithfulness that he has put into you. may He prosper your testimony for the glory of His Holy Son.
By His Grace
(please overlook the syntax errors in this reply it was generated on a mobile device)

Monty Hansen November 4, 2014

We processed several hobo’s through our coal system, & injured a few, but none ever got anything from the power company. I remember we would always worried about finding a chunk of scalp or something in the grating where the tripper car drops coal down into the silo. One especially memerable event was when a coal yard operator found a down vest jacket on the coal pile and bragged about how lucky he was to find this jacket, the size even fit, but the jacket did smell a little funny. yes it was ripped off the body of a hobo by the plow above conveyor one & shot out onto the coal pile by the stackout conveyor.

It was always unnerving to have a pullcord go down in the middle of the night deep down in the coal trestle, while the belts were shut down. You’d have to go down there alone, in the dark & reset the pull cords, so the belts could be started later when needed. You knew it wasn’t a trick because the whole crew had been up in the control room together eating dinner or something. You always wondered if you might run into a real hobo – or the ghost of one.

When Power Plant Durability and Automation Goes Too Far — Repost

Everyone expects when they enter an elevator and push a button for the 3rd floor that when the doors open they will find themselves on the third floor. It doesn’t occur to most people what actually has to happen behind the scenes for the elevator to go through the motions of carrying someone up three stories. In most cases you want an automated system that requires as little interaction as possible.

I have found while working in the Coal-fired Power Plant in North Central Oklahoma that some systems are better off with a little less than perfect automation. We might think about that as we move into a new era of automated cars, robot soldiers and automatic government shutdowns. Let me give you a for instance.

The coal trains that brought the coal from Wyoming all the way down to the plant would enter a building called “The Dumper.” Even though this sounds like a less savory place to park your locomotive, it wasn’t called a Dumper because it was a dump. It was called a Dumper because it “Dumped.” Here is a picture of a dumper:

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

The coal train would pull into this room one car at a time. I talked about the dumper in an earlier post entitled “Lifecycle of a Power Plant Lump of coal“. As each car is pulled into this building by a large clamp called the “Positioner” (How is that for a name? It is amazing how when finding names for this particular equipment they decided to go with the “practical” words. The Positioner positions the coal cars precisely in the right position so that after the car clamps come down on the car, it can be rotated upside down “Dumping” the coal into the hoppers below. No fancy names like other parts of the power Plant like the “Tripper Gallery” or the “Generator Bathtub” here.

A typical coal train has 110 cars full of coal when it enters the dumper. In the picture of the dumper above if you look in the upper left corner you will see some windows. This is the Dumper Control Room. This is where someone sits as each car pulls through the dumper and dumps the coal.

Not long after the plant was up and running the entire operation of the dumper was automated. That meant that once put into motion, the dumper and the controls would begin dumping cars and continue operating automatically until the last car was through the dumper.

Let me try to remember the sequence. I know I’ll leave something out because there are a number of steps and it has been a while since I have been so fortunate as to work on the dumper during a malfunction… But here goes…

I remember that the first coal car on the train had to positioned without the positioner because… well….. the car directly in front of the first car is, of course, the locomotive. Usually a Burlington Northern Santa Fe Engine.

A picture from Shutterstock of a locomotive pulling a coal train

A picture from Shutterstock of a locomotive pulling a coal train

Before I explain the process, let me show you a picture of the Positioner. This the machine that pulls the train forward:

The piece of equipment with the large wheels is the positioner  It can pull a coal train full of coal forward to precisely the proper position

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The automation begins after the first or second car is dumped. I’ll start with the second car just finishing the process as it rolls back up right after dumping the coal… The car clamps go up.

  • The rear holding arm (that holds the car in place from the entrance side of the dumper) lifts up out of the way.
  • The Positioner begins pulling the entire train forward.
  • Electric eyes on both end of the dumper detect when the next car has entered the dumper.
  • The Positioner adjusts the position of the coal car to the exact position (within an inch or two) by backing up and pulling forward a couple of times.
  • The Holding arm on the back end comes down on the couplings between the two train cars one back from the car that is going to be dumped.
  • The four car clamps come down on the train car at the same time that the dumper begins rotating.
  • The Positioner clamp lifts off of the train car couplings.
  • Water Sprayers come on that are attached to the top of the dumper so that it wets the coal in order to act as a dust suppression.
  • The Positioner travels back to the car clamp between the car that was just emptied before and the car in front of it.
  • As the train car rotates to the desired angle. (I think it’s about 145 degrees), it begins slowing down.
  • When the car has been rotated as far as desired it comes to a stop.
  • The Dumper pauses for a few seconds as all the coal is dumped from the coal car.
  • The Positioner moves back and forth until it is in just the right position for the positioner arm to lower onto the couplings between the cars.
  • The Sprayers turn off.
  • The Dumper begins returning to an upright position.
  • The Positioner arm lowers down onto the clamps between the coal cars.
  • Once the car is upright the dumper stops rotating.
  • The 4 car clamps go up.
  • The Holding arm goes up. And the process is repeated.

This is a beautiful process when it works correctly. Before I tell you about the times it doesn’t work correctly, let me tell you about how this process was a little…uh… too automated…

So. The way this worked originally, was that once the automated process was put into operation after the second car had been dumped, all the dumper control room operator had to do was sit there and look out the window at the coal cars being dumped. They may have had some paperwork they were supposed to be doing, like writing down the car numbers as they pulled through the dumper. It seems that paperwork was pretty important back then.

Each car would pull through the dumper… The coal would be dumped. The next car would be pulled in… etc.

Well. Trains come from Wyoming at any time of the day. Train operators were paid pretty well, and the locomotive engineers would come and sit in the control room while the train was being dumped. Often (more often than not it seemed) the trains would pull into the dumper in the middle of the night. Coalyard operators were on duty 24 by 7.

So, imagine this…. Imagine Walt Oswalt… a feisty sandy haired Irishman at the dumper controls around 3 in the morning watching 110 cars pull through the dumper. Dumping coal…. One after the other. I think the time it took to go from dumping one car to the next was about 2 1/2 minutes. So it took about 3 1/2 hours to dump one train (I may be way off on the time… Maybe one of the operators would like to leave a comment below with the exact time).

This meant that the dumper operator had to sit there and watch the coal cars being slowly pulled through the dumper for about 3 hours. Often in the middle of the night.

For anyone who is older than 25 years, you will remember that the last car on a train was called a Caboose. The locomotive engineers called it a “Weight Car”. This made me think that it was heavy. I don’t know. It didn’t look all that heavy to me… You decide for yourself:

A Caboose

A Caboose

Back in those days, there was a caboose on the back of every train. A person used to sit in there while the train was going down the tracks. I think it was in case the back part of the train accidentally became disconnected from the front of the train, someone would be back there to notice. That’s my guess. Anyway. Later on, a sensor was placed on the last car instead of a caboose. That’s why you don’t see them today. Or maybe it was because of something that happened one night…

You see… it isn’t easy for Walt Oswalt (I don’t mean to imply that it was Walt that was there that night.. well… it sounds like I’m implying that doesn’t it…. I use Walt when telling this story because he wouldn’t mind. I really don’t remember who it was) to keep his eyes open and attentive for 3 straight hours. Anyway… One night while the coal cars were going through the dumper automatically being dumped one by one… there was a point when the sprayers stopped spraying and the 4 car clamps rose, and there there was a moment of pause, if someone had been there to listen very carefully, they might have heard a faint snoring sound coming from the dumper control room.

That is all fine and dandy until the final car rolled into the dumper. You see… One night…. while all the creatures were sleeping (not even a mouse)… the car clamps came down on the caboose. Normally the car clamps had to be raised to a higher position to keep them from tearing the top section off of the caboose.

If it had been Walt… He woke when he heard the crunching sound of the top of the caboose just in time to see the caboose as it swung upside down. He was a little too late hitting the emergency stop button. The caboose rolled over. Paused for a moment as the person manning the caboose came to a rest on the ceiling inside… then rolled back upright all dripping wet from the sprayer that had meant to keep down the dust.

As the car clamps came up… a man darted out the back of the caboose. He ran out of the dumper…. knelt down… kissed the ground… and decided from that moment on that he was going to start going back to church every Sunday. Ok. I exaggerate a little. He really limped out of the dumper.

Needless to say. A decision had to be made. It was decided that there can be too much automation at times. The relay logic was adjusted so that at the critical point where the dumper decides to dump a coal car, it had to pause and wait until the control room operator toggled the “Dump” switch on the control panel. This meant that the operator had to actively decide to dump each car.

As a software programmer…. I would have come up with another solution… such as a caboose detector…. But given the power that was being exerted when each car was being dumped it was probably a good idea that you guaranteed that the dumper control room operator actually had his eyeballs pointed toward the car being dumped instead of rolled back in his head.

I leave you with that thought as I go to another story. I will wait until another time to talk about all the times I was called out at night when the dumper had failed to function.

This is a short story of durability…

I walked in the electric shop one day as an electrician trainee in 1984 to find that Andy Tubbs had taken an old drill and hooked it up to the 480 volt power source that we used to test motors. Ok. This was an odd site. We had a three phase switch on the wall with a fairly large cable attached with three large clips so we could hook them up to motors that we had overhauled to test the amperage that they pulled to make sure they were within the specified amount according to their nameplate.

I hesitated a moment, but I couldn’t resist…. I had to ask, “Andy…. Why have you hooked up that old drill to 480? (it was a 120 volt drill). He replied matter-of-factly (Factly? Can I really say that in public?), “I am going to burn up this old drill from the Osage Plant (See “Pioneers of Power Plant Fame Finally Find Rest” for more information about Osage Plant) so that I can turn it in for a new one.

Ok. I figured there must be a policy somewhere that said that if you turned in a burned up tool they would give you a new one. I knew that Bud Schoonover down at the toolroom was always particular about how he passed out new tools (I have experienced the same thing at my new job when trying to obtain a new security cable for my laptop).

Anyway. Andy turned the 480 volts on and powered up the drill. The drill began whining as it whirled wildly. Andy stood there holding up the drill as it ran in turbo mode for about five minutes. The drill performed like a champ.

Old Power Drill

Old Power Drill

After showing no signs of burning itself up running on 480 volts instead of 120 volts, Andy let off of the trigger and set it back on the workbench. He said, “This is one tough drill! I think I’ll keep it.” Sure. It looked like something from the 1950’s (and it probably was). But, as Andy said, it was one tough drill. On that day, because of the extra Durability of that old Pioneer Power Plant Drill, Andy was robbed of a new variable speed, reversible drill that he was so craving.

new variable speed reversible drill

new variable speed reversible drill

Comments from original  post:

 

Ron   October 12, 2013:

Great stories!
Coal trains today have engines at the rear of the train. I hope we never try to dump one of them!

devin  October 12, 2013:

It takes about 7 hrs to dump 150 car train

Bruce Kime   October 12, 2013:

Wasn’t Walt but a certain marine we won’t mention. They dumped the last car & forgot to put the car clamps in the up maximum position. They give the go ahead for the train to pull the caboose through! Instant convertible caboose! Now there are break away clamps on the north side. And there are locomotives on the rear of the train because the trains are made up of 150 cars .

 

NEO   October 12, 2013:

Like you, I can think of several ways to automate the process without dumping the caboose but I think the operator pushing the button may be the best. Automation can get out of hand.

Jack Curtis  November 3, 2013:

An engineer used to remind us: “A machine always does what you tell it to…whethr you want it to, or not.”
IF the union or the lawyers require a duty operator on an automated process, I’m all for giving him a button to push and attaching some responsibility. All automation designs are approved by Murphy…Wow! Thanks for the update Bruce!

Lifecycle of a Power Plant Lump of Coal — Repost

Originally posted August 16, 2013:

Fifty Percent of our electricity is derived from coal.  Did you ever wonder what has to take place for that to happen?  I thought I would walk through the lifecycle of a piece of coal  to give you an idea.  I will not start back when the it was still a tree in a prehistoric world where dinosaurs grew long necks to reach the branches.  I will begin when the large scoop shovel digs it out of the ground and loads it onto a coal truck.

The coal is loaded onto trucks like these before it is dumped onto the train cars.  This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal for the power plant in North Central Oklahoma came from Wyoming.  There were trains from the Black Thunder Mine and the Powder River Basin.

Coal Trains on their way to power plants

Coal Trains on their way to power plants

It’s a long ride for the lump of coal sitting in the coal train on it’s way to Oklahoma.  Through Nebraska and Kansas.  It’s possible for the coal to be visited by a different kind of traveler.  One that we may call “A tramp.”  Someone that catches a ride on a train without paying for the ticket.

One time a tramp (or a hobo, I don’t remember which), caught a ride on one of our coal trains.  They forgot to wake up in time, and found their self following the lumps of coal on their next phase of the journey.  You see.  Once the coal reached the plant, one car at a time enters a building called the “Rotary Dumper”.

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

As each train car enters the dumper four clamps come done on the car and it rolls upside down dumping the coal into a bin below.  Imagine being a tramp waking up just in time to find yourself falling into a bin full of coal. with a car full of coal dumping coal on top of you.  One coal car contained 102 tons of coal (today they carry 130 tons).  Today one train contains 13,300 tons of coal.  This is over 26 million pounds of coal per train.

Miraculously, this passenger survived the fall and was able to call for help or someone saw them fall.  He was quickly rescued and brought to safety.  Needless to say, the tramp went from being penniless to being, “comfortable” very quickly.  I don’t know that it made the news at the time.  I think the electric company didn’t want it to become “viral” that they had dumped a hobo into a coal bin by accident.  Well.  They didn’t know what “going viral” meant at the time, but I’m sure they had some other phrase for it then.

Ok.  Time for a Side Story:

Since I’m on the subject of someone catching a clandestine ride on a train, this is as good of a place as any to sneak in the tragic story of Mark Meeks.  Well.  I say it was tragic.  When Mark told the story, he seemed rather proud of his experience.  You see.  Mark was a construction electrician.  He hired on as a plant electrician in order to settle down, but in his heart I felt like he was always a construction electrician.  That is, he didn’t mind moving on from place to place.  Doing a job and then moving on.

Mark explained that when he was working at a construction job in Chicago where he worked for 2 years earning a ton of overtime, he figured that by the time he finished he would have saved up enough to buy a house and settle down.  He was married and living in an apartment in Chicago.  He didn’t spend much time at home as he was working 12 hour days at least 6 days each week.  He figured that was ok, because when he was done, he would be set for life.

Unknown to him at the time, each morning when he woke up before the crack of dawn to go to work, his wife would drive to O’Hara airport and catch a plane to Dallas, Texas where she was having an affair with some guy.  By the time Mark returned from work 14 hours later, she was back home.  Each day, Mark was earning a ton of overtime, and his wife was burning it on airline tickets.

When the two years were over, Mark came home to his apartment to collect his wife and his things and go live in peace in some small town some where.  That was when he learned that his wife had been having the affair and using all his money to do it.  She was leaving him.  Penniless.

Completely broke, Mark drifted around for a while.  Finally one day he saw a train that was loaded down with wooden electric poles.  Mark figured that wherever those poles were going, there was going to be work.  So, he hopped on the train and traveled all the way from Minneapolis Minnesota riding in the cold, wedged between some wooden poles on one of the cars on the train.

The train finally arrived at its destination somewhere at a port in the Gulf of Mexico.  I don’t remember if it was Mississippi or Louisiana.  He watched as they unloaded the poles, waiting to see what jobs were going to be needed for whatever the poles were for.  He watched as they took the large wooden poles and piled them up in the ocean.  They were using them to build up the shoreline.  There were no jobs.

It is when you have been beaten down to the point of breaking when you reach a very important point in your life.  Do you give up, or do you pick yourself up and make something of yourself?  Mark chose the latter.  He was a natural fighter.  He eventually ended up at our plant as contract help, and then was hired as a plant electrician.

End of side story.

Let’s follow the lump of coal after it is poured out of the coal train in the dumper…

The coal is fed onto a conveyor belt.  Let’s call this Conveyor 1, (because that is what we called it in the plant).  This has a choice to feed it onto belt 2 which leads up to the stack out tower, or it can feed the other way to where some day it was planned to add another conveyor with another stackout tower.  This was going to go to a pile of coal for two other units that were never built.

Anyway, when the coal drops down on Conveyor 2, way under ground, it travels up to the ground level, and continues on its way up to the top of the stackout tower where it feeds onto Belt 3.  Belt 3 is a short belt that is on an arm that swings out over the coal pile.  The coal is fed onto the coal pile close to the stack out tower.  I suppose it is called stack out, because the coal is stacked up next to the tower.

A view of the coalyard from the top of the Smoke Stack

A view of the coalyard from the top of the Smoke Stack. The tower with the conveyor running up to the top is the stack out tower. Belt 3 is the arm pointing to the right in this picture

Anyway, there are large dozers (bulldozers) and dirt movers that pickup the coal and spread it out to make room for more coal from more coal trains.  As mentioned above.  One train now carries 26 million pounds of coal.

Dirt Mover full of coal

Dirt Mover full of coal

the  coal that is spread out on the coal pile has to stay packed down otherwise it would spontaneously combust.  That is, it would catch on fire all by itself.  Once coal on a coal pile catches on fire it is impossible to “reasonably” put out.  You can spray all the water on it you want and it won’t go out.  When a file breaks out, you just have to drag the burning coal off of the pile and let it burn out.

In order to keep the coal from performing spontaneous combustion, the dirt movers kept it packed down.  As long as the coal is packed tight, air can’t freely reach the buried coal, and it doesn’t catch fire.  So, dirt movers were constantly driving back and forth on the coal pile to keep the coal well packed.  Even on the picture of the coalyard above from the smoke stack, you can see two pieces of heavy equipment out on the coal pile traveling back and forth packing the coal.

Anyway, the next phase in the life of the lump of coal happens when it finds itself directly under the stack out tower, and it is fed down by a vibratory feeder onto a conveyor.  In our plant, these belts were called, Belts 4, 5, 6 and 7.  Belts 4 and 5 fed onto Belt 8 and belts 6 and 7 fed onto belt 9.

Belts 8 and 9 brought the coal up from under the coal pile to the top of the Crusher tower.  In the picture above you can see that tower to the right of the stack out tower with the long belts coming from the bottom of the tower toward the plant.  The crusher tower takes the large lumps of coal that can be the size of a baseball or a softball and crushes it down to the size of marbles and large gumballs.

Coal conveyor carrying coal to the coal silos from the coalyard

Coal conveyor carrying coal to the coal silos from the coalyard.  This is the size of the coal after it has been crushed by the crusher

From the crusher tower the lump of coal which is now no more than a nugget of coal travels from the coal yard up to the plant on belts 10 and 11.

conveyor 10 and 11 are almost 1/2 mile long

conveyor 10 and 11 are almost 1/2 mile long

Up at the top of this belt in the distance you can see another tower.  This tower is called the Transfer tower.  Why?  Well, because it transfers the coal to another set of belts, Belt 12 and 13.  You can see them going up to the right to that tower in the middle between the two boilers.

The tower between the two boilers is called the Surge Bin tower.  That basically means that there is a big bin there that can hold a good amount of coal to feed to either unit.  At the bottom of the white part of the tower you can see that there is a section on each side.  This is where the tripper galleries are located.  There are two belts in each tripper, and two belts that feed to each tripper belt from the surge bin.  So, just to keep counting, Belts 14 and 15 feed to unit one and belts 16 and 17 feed to unit 2 from the surge bin.  then Belts 18 and 19 are the two tripper belts that dump coal into the 6 silos on unit one, while belts 20 and 21 feed the silos on unit 2.

Once in the Coal silos, the coal is through traveling on belts.  The silos are positioned over things called bowl mills.  The coal is fed from the silo into the bowl mill through something called a Gravimetric feeder, which is able to feed a specific amount of coal into the bowl mill.  This is the point that basically decides how hot the boiler is going to be.

Once the coal leaves the gravimetric feeder and drops down to the bowl mill, it is bound for the boiler.  The gravimetric feeder is tied right to the control room.  When they need to raise load more than just a minimal amount, a control room operator increases the amount of coal being fed from these feeders in order to increase the flow of coal into the boiler…..  I don’t know… maybe it’s more automatic than that now….  The computer probably does it these days.

When the nugget of coal falls into the bowl mill the long journey from the coal mine in Wyoming is almost complete.  Its short life as a nugget is over and it is pulverized into powder.  The powder is finer than flour.  Another name for a bowl mill is “Pulverizer”.  The coal comes from the Powder River Basin in Wyoming and just before it is consumed in Oklahoma it really does become powder.

Big rollers are used to crush the coal into fine particles.  The pulverized coal his blown up pipes by the primary air fans and blown directly into the boiler where they burst into flames.  A bright orange flame.  The color reminds me of orange sherbet Ice cream.

The color of the fireball in the boiler

The color of the fireball in the boiler

At this point an incredible thing happens to the coal that so many years ago was a part of a tree or some other plant.  The chemical process that trapped the carbon from the carbon dioxide millions of years earlier is reversed and the carbon is once again combined to the oxygen as it was many millennium ago. A burst of heat is released which had been trapped after a cooling effect below the tree as it sucked the carbon out of the environment way back then.

The heat is transferred to the boiler tubes that line the boiler.  The tubes heat the water and turn it into steam.  The steam shoots into the turbine that turns a generator that produces the electricity that enters every house in the country.  The solar power from eons ago that allowed the tree to grow is being used today to power our world.  What an amazing system.

To take this one step further, the carbon dioxide that is released into the atmosphere today is replenishing the lost carbon dioxide from many years ago.  Back when plants could breathe freely.  Back before the carbon dioxide level was depleted almost to the point of the extinction of plant life on this planet.  Remember, what we look on as a pollutant and a poison, to a plant is a chance to grow.  The Sahara desert used to be a thriving forest.  Maybe it will be again some day.

So, there is the question of global warming.  We humans are so short sighted sometimes.  We want to keep everything the same way we found it when we were born.  We try desperately to keep animals from becoming extinct.   We don’t think about the bazillions (ok, so I exaggerate) of animals that were extinct long before man arrived.  It is natural for extinction to occur.  That is how things evolve.  We are trying to keep a system the same when it has always been changing.

Years from now we may develop ways to harness the energy from the sun or even from the universe in ways that are unimaginable today.  When that time arrives, let’s just hope that we remain good stewards of the world so that we are around to see it.  I believe that the use of fossil fuels, (as odd as that may seem) is a major step in reviving our planet’s natural resources.

When Power Plant Durability and Automation Goes Too Far

Everyone expects when they enter an elevator and push a button for the 3rd floor that when the doors open they will find themselves on the third floor.  It doesn’t occur to most people what actually has to happen behind the scenes for the elevator to go through the motions of carrying someone up three stories.  In most cases you want an automated system that requires as little interaction as possible.

I have found while working in the Coal-fired Power Plant in North Central Oklahoma that some systems are better off with a little less than perfect automation.  We might think about that as we move into a new era of automated cars, robot soldiers and automatic government shutdowns.  Let me give you a for instance.

The coal trains that brought the coal from Wyoming all the way down to the plant would enter a building called “The Dumper.”  Even though this sounds like a less savory place to park your locomotive, it wasn’t called a Dumper because it was a dump.  It was called a Dumper because it “Dumped.”  Here is a picture of a dumper:

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

The coal train would pull into this room one car at a time.  I talked about the dumper in an earlier post entitled “Lifecycle of a Power Plant Lump of coal“.  As each car is pulled into this building by a large clamp called the “Positioner” (How is that for a name?  It is amazing how when finding names for this particular equipment they decided to go with the “practical” words.  The Positioner positions the coal cars precisely in the right position so that after the car clamps come down on the car, it can be rotated upside down “Dumping” the coal into the hoppers below.  No fancy names like other parts of the power Plant like the “Tripper Gallery” or the “Generator Bathtub” here.

A typical coal train has 110 cars full of coal when it enters the dumper.  In the picture of the dumper above if you look in the upper left corner you will see some windows.  This is the Dumper Control Room.  This is where someone sits as each car pulls through the dumper and dumps the coal.

Not long after the plant was up and running the entire operation of the dumper was automated.  That meant that once put into motion, the dumper and the controls would begin dumping cars and continue operating automatically until the last car was through the dumper.

Let me try to remember the sequence.  I know I’ll leave something out because there are a number of steps and it has been a while since I have been so fortunate as to work on the dumper during a malfunction…  But here goes…

I remember that the first coal car on the train had to positioned without the positioner because… well….. the car directly in front of the first car is, of course, the locomotive.  Usually a Burlington Northern Santa Fe Engine.

A picture from Shutterstock of a locomotive pulling a coal train

A picture from Shutterstock of a locomotive pulling a coal train

Before I explain the process, let me show you a picture of the Positioner.  This the machine that pulls the train forward:

The piece of equipment with the large wheels is the positioner  It can pull a coal train full of coal forward to precisely the proper position

The piece of equipment with the large wheels is the positioner It can pull a coal train full of coal forward to precisely the proper position

The automation begins after the first or second car is dumped.  I’ll start with the second car just finishing the process as it rolls back up right after dumping the coal…  The car clamps go up.

  • The rear holding arm (that holds the car in place from the entrance side of the dumper) lifts up out of the way.
  • The Positioner begins pulling the entire train forward.
  • Electric eyes on both end of the dumper detect when the next car has entered the dumper.
  • The Positioner adjusts the position of the coal car to the exact position (within an inch or two) by backing up and pulling forward a couple of times.
  • The Holding arm on the back end comes down on the couplings between the two train cars one back from the car that is going to be dumped.
  • The four car clamps come down on the train car at the same time that the dumper begins rotating.
  • The Positioner clamp lifts off of the train car couplings.
  • Water Sprayers come on that are attached to the top of the dumper so that it wets the coal in order to act as a dust suppression.
  • The Positioner travels back to the car clamp between the car that was just emptied before and the car in front of it.
  • As the train car rotates to the desired angle.  (I think it’s about 145 degrees), it begins slowing down.
  • When the car has been rotated as far as desired it comes to a stop.
  • The Dumper pauses for a few seconds as all the coal is dumped from the coal car.
  • The Positioner moves back and forth until it is in just the right position for the positioner arm to lower onto the couplings between the cars.
  • The Sprayers turn off.
  • The Dumper begins returning to an upright position.
  • The Positioner arm lowers down onto the clamps between the coal cars.
  • Once the car is upright the dumper stops rotating.
  • The 4 car clamps go up.
  • The Holding arm goes up.  And the process is repeated.

This is a beautiful process when it works correctly.  Before I tell you about the times it doesn’t work correctly, let me tell you about how this process was a little…uh… too automated…

So.  The way this worked originally, was that once the automated process was put into operation after the second car had been dumped, all the dumper control room operator had to do was sit there and look out the window at the coal cars being dumped.  They may have had some paperwork they were supposed to be doing, like writing down the car numbers as they pulled through the dumper.  It seems that paperwork was pretty important back then.

Each car would pull through the dumper… The coal would be dumped.  The next car would be pulled in… etc.

Well.  Trains come from Wyoming at any time of the day.  Train operators were paid pretty well, and the locomotive engineers would come and sit in the control room while the train was being dumped.  Often (more often than not it seemed) the trains would pull into the dumper in the middle of the night.  Coalyard operators were on duty 24 by 7.

So, imagine this…. Imagine Walt Oswalt… a feisty sandy haired Irishman at the dumper controls around 3 in the morning watching 110 cars pull through the dumper.  Dumping coal…. One after the other. I think the time it took to go from dumping one car to the next was about 2 1/2 minutes.  So it took about 3 1/2 hours to dump one train (I may be way off on the time… Maybe one of the operators would like to leave a comment below with the exact time).

This meant that the dumper operator had to sit there and watch the coal cars being slowly pulled through the dumper for about 3 hours.  Often in the middle of the night.

For anyone who is older than 25 years, you will remember that the last car on a train was called a Caboose.  The locomotive engineers called it a “Weight Car”.  This made me think that it was heavy.  I don’t know.  It didn’t look all that heavy to me… You decide for yourself:

A Caboose

A Caboose

Back in those days, there was a caboose on the back of every train.  A person used to sit in there while the train was going down the tracks.  I think it was in case the back part of the train accidentally became disconnected from the front of the train, someone would be back there to notice.  That’s my guess.  Anyway. Later on, a sensor was placed on the last car instead of a caboose.  That’s why you don’t see them today.  Or maybe it was because of something that happened one night…

You see… it isn’t easy for Walt Oswalt (I don’t mean to imply that it was Walt that was there that night.. well… it sounds like I’m implying that doesn’t it….  I use Walt when telling this story because he wouldn’t mind.  I really don’t remember who it was) to keep his eyes open and attentive for 3 straight hours.  Anyway… One night while the coal cars were going through the dumper automatically being dumped one by one… there was a point when the sprayers stopped spraying and the 4 car clamps rose, and there there was a moment of pause, if someone had been there to listen very carefully, they might have heard a faint snoring sound coming from the dumper control room.

That is all fine and dandy until the final car rolled into the dumper.  You see… One night…. while all the creatures were sleeping (not even a mouse)… the car clamps came down on the caboose.  Normally the car clamps had to be raised to a higher position to keep them from tearing the top section off of the caboose.

If it had been Walt…  He woke when he heard the crunching sound of the top of the caboose just in time to see the caboose as it swung upside down.  He was a little too late hitting the emergency stop button.  The caboose rolled over.  Paused for a moment as the person manning the caboose came to a rest on the ceiling inside… then rolled back upright all dripping wet from the sprayer that had meant to keep down the dust.

As the car clamps came up… a man darted out the back of the caboose.  He ran out of the dumper…. knelt down… kissed the ground… and decided from that moment on that he was going to start going back to church every Sunday.  Ok.  I exaggerate a little.  He really limped out of the dumper.

Needless to say.  A decision had to be made.  It was decided that there can be too much automation at times.  The relay logic was adjusted so that at the critical point where the dumper decides to dump a coal car, it had to pause and wait until the control room operator toggled the “Dump” switch on the control panel.  This meant that the operator had to actively decide to dump each car.

As a software programmer…. I would have come up with another solution… such as a caboose detector…. But given the power that was being exerted when each car was being dumped it was probably a good idea that you guaranteed that the dumper control room operator actually had his eyeballs pointed toward the car being dumped instead of rolled back in his head.

I leave you with that thought as I go to another story.  I will wait until another time to talk about all the times I was called out at night when the dumper had failed to function.

This is a short story of durability…

I walked in the electric shop one day as an electrician trainee in 1984 to find that Andy Tubbs had taken an old drill and hooked it up to the 480 volt power source that we used to test motors.  Ok.  This was an odd site.  We had a three phase switch on the wall with a fairly large cable attached with three large clips so we could hook them up to motors that we had overhauled to test the amperage that they pulled to make sure they were within the specified amount according to their nameplate.

I hesitated a moment, but I couldn’t resist…. I had to ask, “Andy…. Why have you hooked up that old drill to 480? (it was a 120 volt drill).  He replied matter-of-factly (Factly?  Can I really say that in public?), “I am going to burn up this old drill from the Osage Plant (See “Pioneers of Power Plant Fame Finally Find Rest” for more information about Osage Plant) so that I can turn it in for a new one.

Ok.  I figured there must be a policy somewhere that said that if you turned in a burned up tool they would give you a new one.  I knew that Bud Schoonover down at the toolroom was always particular about how he passed out new tools (I have experienced the same thing at my new job when trying to obtain a new security cable for my laptop).

Anyway.  Andy turned the 480 volts on and powered up the drill.  The drill began whining as it whirled wildly.  Andy stood there holding up the drill as it ran in turbo mode for about five minutes.  The drill performed like a champ.

Old Power Drill

Old Power Drill

After showing no signs of burning itself up running on 480 volts instead of 120 volts, Andy let off of the trigger and set it back on the workbench.  He said, “This is one tough drill!  I think I’ll keep it.”  Sure.  It looked like something from the 1950’s (and it probably was).  But, as Andy said, it was one tough drill.  On that day, because of the extra Durability of that old Pioneer Power Plant Drill, Andy was robbed of a new variable speed, reversible drill that he was so craving.

new variable speed reversible drill

new variable speed reversible drill

Lifecycle of a Power Plant Lump of Coal

Fifty Percent of our electricity is derived from coal.  Did you ever wonder what has to take place for that to happen?  I thought I would walk through the lifecycle of a piece of coal  to give you an idea.  I will not start back when the it was still a tree in a prehistoric world where dinosaurs grew long necks to reach the branches.  I will begin when the large scoop shovel digs it out of the ground and loads it onto a coal truck.

The coal is loaded onto trucks like these before it is dumped onto the train cars.  This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal is loaded onto trucks like these before it is dumped onto the train cars. This photo was found at http://www.gillettechamber.com/events/eventdetail.aspx?EventID=2827

The coal for the power plant in North Central Oklahoma came from Wyoming.  There were trains from the Black Thunder Mine and the Powder River Basin.

Coal Trains on their way to power plants

Coal Trains on their way to power plants

It’s a long ride for the lump of coal sitting in the coal train on it’s way to Oklahoma.  Through Nebraska and Kansas.  It’s possible for the coal to be visited by a different kind of traveler.  One that we may call “A tramp.”  Someone that catches a ride on a train without paying for the ticket.

One time a tramp (or a hobo, I don’t remember which), caught a ride on one of our coal trains.  They forgot to wake up in time, and found their self following the lumps of coal on their next phase of the journey.  You see.  Once the coal reached the plant, one car at a time enters a building called the “Rotary Dumper”.

A rotary dumper much like the one that was at our Power Plant

A rotary dumper much like the one that was at our Power Plant

As each train car enters the dumper four clamps come done on the car and it rolls upside down dumping the coal into a bin below.  Imagine being a tramp waking up just in time to find yourself falling into a bin full of coal. with a car full of coal dumping coal on top of you.  One coal car contained 102 tons of coal (today they carry 130 tons).  Today one train contains 13,300 tons of coal.  This is over 26 million pounds of coal per train.

Miraculously, this passenger survived the fall and was able to call for help or someone saw them fall.  He was quickly rescued and brought to safety.  Needless to say, the tramp went from being penniless to being, “comfortable” very quickly.  I don’t know that it made the news at the time.  I think the electric company didn’t want it to become “viral” that they had dumped a hobo into a coal bin by accident.  Well.  They didn’t know what “going viral” meant at the time, but I’m sure they had some other phrase for it then.

Ok.  Time for a Side Story:

Since I’m on the subject of someone catching a clandestine ride on a train, this is as good of a place as any to sneak in the tragic story of Mark Meeks.  Well.  I say it was tragic.  When Mark told the story, he seemed rather proud of his experience.  You see.  Mark was a construction electrician.  He hired on as a plant electrician in order to settle down, but in his heart I felt like he was always a construction electrician.  That is, he didn’t mind moving on from place to place.  Doing a job and then moving on.

Mark explained that when he was working at a construction job in Chicago where he worked for 2 years earning a ton of overtime, he figured that by the time he finished he would have saved up enough to buy a house and settle down.  He was married and living in an apartment in Chicago.  He didn’t spend much time at home as he was working 12 hour days at least 6 days each week.  He figured that was ok, because when he was done, he would be set for life.

Unknown to him at the time, each morning when he woke up before the crack of dawn to go to work, his wife would drive to O’Hara airport and catch a plane to Dallas, Texas where she was having an affair with some guy.  By the time Mark returned from work 14 hours later, she was back home.  Each day, Mark was earning a ton of overtime, and his wife was burning it on airline tickets.

When the two years were over, Mark came home to his apartment to collect his wife and his things and go live in peace in some small town some where.  That was when he learned that his wife had been having the affair and using all his money to do it.  She was leaving him.  Penniless.

Completely broke, Mark drifted around for a while.  Finally one day he saw a train that was loaded down with wooden electric poles.  Mark figured that wherever those poles were going, there was going to be work.  So, he hopped on the train and traveled all the way from Minneapolis Minnesota riding in the cold, wedged between some wooden poles on one of the cars on the train.

The train finally arrived at its destination somewhere at a port in the Gulf of Mexico.  I don’t remember if it was Mississippi or Louisiana.  He watched as they unloaded the poles, waiting to see what jobs were going to be needed for whatever the poles were for.  He watched as they took the large wooden poles and piled them up in the ocean.  They were using them to build up the shoreline.  There were no jobs.

It is when you have been beaten down to the point of breaking when you reach a very important point in your life.  Do you give up, or do you pick yourself up and make something of yourself?  Mark chose the latter.  He was a natural fighter.  He eventually ended up at our plant as contract help, and then was hired as a plant electrician.

End of side story.

Let’s follow the lump of coal after it is poured out of the coal train in the dumper…

The coal is fed onto a conveyor belt.  Let’s call this Conveyor 1, (because that is what we called it in the plant).  This has a choice to feed it onto belt 2 which leads up to the stack out tower, or it can feed the other way to where some day it was planned to add another conveyor with another stackout tower.  This was going to go to a pile of coal for two other units that were never built.

Anyway, when the coal drops down on Conveyor 2, way under ground, it travels up to the ground level, and continues on its way up to the top of the stackout tower where it feeds onto Belt 3.  Belt 3 is a short belt that is on an arm that swings out over the coal pile.  The coal is fed onto the coal pile close to the stack out tower.  I suppose it is called stack out, because the coal is stacked up next to the tower.

A view of the coalyard from the top of the Smoke Stack

A view of the coalyard from the top of the Smoke Stack. The tower with the conveyor running up to the top is the stack out tower. Belt 3 is the arm pointing to the right in this picture

Anyway, there are large dozers (bulldozers) and dirt movers that pickup the coal and spread it out to make room for more coal from more coal trains.  As mentioned above.  One train now carries 26 million pounds of coal.

Dirt Mover full of coal

Dirt Mover full of coal

the  coal that is spread out on the coal pile has to stay packed down otherwise it would spontaneously combust.  That is, it would catch on fire all by itself.  Once coal on a coal pile catches on fire it is impossible to “reasonably” put out.  You can spray all the water on it you want and it won’t go out.  When a file breaks out, you just have to drag the burning coal off of the pile and let it burn out.

In order to keep the coal from performing spontaneous combustion, the dirt movers kept it packed down.  As long as the coal is packed tight, air can’t freely reach the buried coal, and it doesn’t catch fire.  So, dirt movers were constantly driving back and forth on the coal pile to keep the coal well packed.  Even on the picture of the coalyard above from the smoke stack, you can see two pieces of heavy equipment out on the coal pile traveling back and forth packing the coal.

Anyway, the next phase in the life of the lump of coal happens when it finds itself directly under the stack out tower, and it is fed down by a vibratory feeder onto a conveyor.  In our plant, these belts were called, Belts 4, 5, 6 and 7.  Belts 4 and 5 fed onto Belt 8 and belts 6 and 7 fed onto belt 9.

Belts 8 and 9 brought the coal up from under the coal pile to the top of the Crusher tower.  In the picture above you can see that tower to the right of the stack out tower with the long belts coming from the bottom of the tower toward the plant.  The crusher tower takes the large lumps of coal that can be the size of a baseball or a softball and crushes it down to the size of marbles and large gumballs.

Coal conveyor carrying coal to the coal silos from the coalyard

Coal conveyor carrying coal to the coal silos from the coalyard.  This is the size of the coal after it has been crushed by the crusher

From the crusher tower the lump of coal which is now no more than a nugget of coal travels from the coal yard up to the plant on belts 10 and 11.

conveyor 10 and 11 are almost 1/2 mile long

conveyor 10 and 11 are almost 1/2 mile long

Up at the top of this belt in the distance you can see another tower.  This tower is called the Transfer tower.  Why?  Well, because it transfers the coal to another set of belts, Belt 12 and 13.  You can see them going up to the right to that tower in the middle between the two boilers.

The tower between the two boilers is called the Surge Bin tower.  That basically means that there is a big bin there that can hold a good amount of coal to feed to either unit.  At the bottom of the white part of the tower you can see that there is a section on each side.  This is where the tripper galleries are located.  There are two belts in each tripper, and two belts that feed to each tripper belt from the surge bin.  So, just to keep counting, Belts 14 and 15 feed to unit one and belts 16 and 17 feed to unit 2 from the surge bin.  then Belts 18 and 19 are the two tripper belts that dump coal into the 6 silos on unit one, while belts 20 and 21 feed the silos on unit 2.

Once in the Coal silos, the coal is through traveling on belts.  The silos are positioned over things called bowl mills.  The coal is fed from the silo into the bowl mill through something called a Gravimetric feeder, which is able to feed a specific amount of coal into the bowl mill.  This is the point that basically decides how hot the boiler is going to be.

Once the coal leaves the gravimetric feeder and drops down to the bowl mill, it is bound for the boiler.  The gravimetric feeder is tied right to the control room.  When they need to raise load more than just a minimal amount, a control room operator increases the amount of coal being fed from these feeders in order to increase the flow of coal into the boiler…..  I don’t know… maybe it’s more automatic than that now….  The computer probably does it these days.

When the nugget of coal falls into the bowl mill the long journey from the coal mine in Wyoming is almost complete.  Its short life as a nugget is over and it is pulverized into powder.  The powder is finer than flour.  Another name for a bowl mill is “Pulverizer”.  The coal comes from the Powder River Basin in Wyoming and just before it is consumed in Oklahoma it really does become powder.

Big rollers are used to crush the coal into fine particles.  The pulverized coal his blown up pipes by the primary air fans and blown directly into the boiler where they burst into flames.  A bright orange flame.  The color reminds me of orange sherbet Ice cream.

The color of the fireball in the boiler

The color of the fireball in the boiler

At this point an incredible thing happens to the coal that so many years ago was a part of a tree or some other plant.  The chemical process that trapped the carbon from the carbon dioxide millions of years earlier is reversed and the carbon is once again combined to the oxygen as it was many millennium ago. A burst of heat is released which had been trapped after a cooling effect below the tree as it sucked the carbon out of the environment way back then.

The heat is transferred to the boiler tubes that line the boiler.  The tubes heat the water and turn it into steam.  The steam shoots into the turbine that turns a generator that produces the electricity that enters every house in the country.  The solar power from eons ago that allowed the tree to grow is being used today to power our world.  What an amazing system.

To take this one step further, the carbon dioxide that is released into the atmosphere today is replenishing the lost carbon dioxide from many years ago.  Back when plants could breathe freely.  Back before the carbon dioxide level was depleted almost to the point of the extinction of plant life on this planet.  Remember, what we look on as a pollutant and a poison, to a plant is a chance to grow.  The Sahara desert used to be a thriving forest.  Maybe it will be again some day.

So, there is the question of global warming.  We humans are so short sighted sometimes.  We want to keep everything the same way we found it when we were born.  We try desperately to keep animals from becoming extinct.   We don’t think about the bazillions (ok, so I exaggerate) of animals that were extinct long before man arrived.  It is natural for extinction to occur.  That is how things evolve.  We are trying to keep a system the same when it has always been changing.

Years from now we may develop ways to harness the energy from the sun or even from the universe in ways that are unimaginable today.  When that time arrives, let’s just hope that we remain good stewards of the world so that we are around to see it.  I believe that the use of fossil fuels, (as odd as that may seem) is a major step in reviving our planet’s natural resources.